Technical Report on the Sleitat Tin-Silver Exploration Target Southwest Alaska 2015 NI 43-101 Report

Prepared for:

Strongbow Exploration Inc. Suite 960 789 West Pender Street Vancouver, BC, V6C 1H2

Prepared by: William T. Ellis C.P.G. Alaska Earth Sciences, Inc. 11401 Olive Lane Anchorage, Alaska 99515

April 14, 2015

Date and Signature Page

This report was prepared for:

Strongbow Exploration Inc. Suite 960 789 West Pender Street Vancouver, BC, V6C 1H2

April 14, 2015

Prepared by:

William T. Ellis, C.P.G. #8719

Alaska Earth Sc iences, Inc. 11401 Olive Lane Anchorage, Alaska 99515

Certificates

Certificate of Qualifications

I, WILLIAM T. ELLIS consulting geologist and a principal of Alaska Earth Sciences, Inc. an Alaska corporation with a business address of 11401 Olive Lane, Anchorage, Alaska 99515, HERBY CERTIFY THAT:

- 1. This certificate applies to The Technical Report on the Sleitat Tin-Silver Exploration Target, Southwest, Alaska 43-101 Report, April 14, 2015.
- 2. I am a graduate of the Mackay School of Mines, University of Nevada, Reno, Nevada with a B.Sc. Degree in geology in 1972.
- From 1972 to the present I have been actively employed in various capacities in the mining industry in numerous locations in North America.; however, I have no prior involvement with the Sleitat Property prior to the February 3, 2006, February 28, 2007 NI 43-101 Reports also the subject of this report.
- 4. I am a Qualified Person as defined in National Instrument 43-101. I am a Certified Professional Geologist with the American Institute of Professional Geologists (CPG#8719) and am licensed geologist in the State of Alaska (Alaska License No. 548).
- 5. I personally visited the property in October 8-9, 2005 and again on July 9-11, 2006. I examined and sampled rock outcrops and rubble along with locating claim corners and drill collars. I am responsible for this technical report which is based on personal experience, a review of technical data, drill core, and the site visits and exploration completed by Alaska Earth Sciences in 2006 and 2011.
- 6. I do not own interest in the properties that comprise Solomon Resources Limited (Solomon)/Thor Gold Alaska or Brett Resources Inc. (Brett)/Osisko properties. I do not own Thor Gold Alaska, Osisko Gold Royalties LTD, or Strongbow Exploration Inc. stock or securities and will not receive Strongbow Exploration Inc. securities as a result of the preparation of this report. I am independent of the above issuers and there is no circumstance that could interfere with my judgment regarding the preparation of this technical report.
- 7. I have read National Instrument 43-101 and this technical report has been prepared in compliance with this instrument.
- 8. As of the date of this certificate, to the best of my knowledge I am not aware of any material factor material change not reflected in this report, the omission of which would make this report misleading and this report contains all scientific and technical information that is required to be disclosed.

DATED in Anchorage, Alaska this April 14, 2015.

William T. Ellis BSc. CPG#8719

Table of Contents

1.0	Summary	1
2.0	Introduction	4
3.0	Reliance on Other Experts	5
4.0	Property Description and Location	5
4.1	Property Location	5
4.2	Land Status	5
5.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography	7
5.1	Access	7
5.2	Climate	7
5.3	Local Resources and Infrastructure	7
5.4	Physiography	
6.0	History	
6.1	Exploration History	
6	5.1.1 1984 and 1988 Cominco Alaska Drilling Work	
6.2	Historical Sleitat Tin Resources Estimates – USBM	10
7.0	Geological Setting and Mineralization	11
7.1	Regional Geology	11
7	1.1.1 Kuskokwim Tin Belt	
7.2	Property Geology	
7	2.1 Faults	15
7	Alteration	16
7.3	Mineralization	16
8.0	Deposit Types	17
8.1	Deposit Type	17
9.0	Exploration	
10.0	Drilling	
11.0	Sample Preparation, Analyses and Security	
11.1	1 Sample Preparation	20
11.2	2 Analyses	
11.3	3 Security	22
12.0	Data Verification	22
12.1	1 Data Verification	22

12.2	AES Independent Sampling	23
13.0	Mineral Processing and Metallurgical Testing	25
14.0	Mineral Resource Estimates	25
15.0	Mineral Reserve Estimate (Not Applicable)	26
16.0	Mining Methods (Not Applicable)	26
17.0	Recovery Methods (Not Applicable)	26
18.0	Project Infrastructure (Not Applicable)	26
19.0	Market Studies and Contracts (Not Applicable)	26
20.0	Environmental Studies, Permitting and Social or Community Impact (Not Applied 26	able)
21.0	Capital and Operating Costs (Not Applicable)	26
22.0	Economic Analysis (Not Applicable)	26
23.0	Adjacent Properties	26
24.0	Other Relevant Data and Information	26
25.0	Interpretation and Conclusions	26
26.0	Recommendations	28
27.0		20

Table of Tables, Figures, and Appendices

Table 1 Claim List	6
Table 2 Cominco 1984 & 1988 Drill Results	19
Table 3 Brett 2006 Summary Drill Results – Sleitat	20
Table 4 Brett-05/Cominco Core Sample Results Comparison	23
Table 5 Comparison of Brett DH 06-10 and Cominco DH Cass 88-8 Results	24
•	
Figure 1 Sleitat Project Location Map	
Figure 2 Sleitat Project Claim Map	
Figure 3 Sleitat Project Airborne Magnetics and Regional Geology	
Figure 4 Sleitat Property Geology Map	
Figure 5 Sleitat Project Geology and Drilling	
Figure 6 Sleitat Prospect Cross Section A-A'	
Figure 7 Sleitat Prospect Proposed Drilling	
Appendix I Table of Drill Core Assays	I
Appendix II Updated Drill Hole Table	II

1.0 Summary

The independent consulting firm of Alaska Earth Sciences, Inc. (AES) of Anchorage, Alaska was commissioned in March 2015 by Strongbow Exploration Inc. (Strongbow) of Vancouver, BC to conduct a preliminary geological investigation to confirm historic reports of tin and silver mineralization located on the Sleitat property in the Kuskokwim Mountain region of southwest Alaska. A NI 43-101 technical geology report dated April 14, 2015 that chronicled this investigation was filed and is intended to support Strongbow's acquisition of the Sleitat property and for other required regulatory filings. This report is an update of a 2007 NI 43-101 Technical Report and includes the results of exploration completed under the supervision of AES during the summers of 2006 and 2011.

The Sleitat property is comprised of the CAS 1 through 22 State of Alaska mining claims totalling 1,425 hectares (3520 acres). Strongbow has entered a property purchase agreement with Osisko Gold Royalties Ltd. ("Osisko") and Ronald K. Netolitzky ("Netolitzky"), to acquire the CAS claims from Osisko's and Netolitzky's respective wholly-owned companies, Brett Alaska Resources Inc. ("Brett") and Thor Gold Alaska Inc. ("Thor"). Prior to the acquisition by Strongbow, Brett and Thor respectively own 80% and 20% of the CAS claims. The property is located in an uninhabited remote area within the boundaries of the Bristol Bay Native Corporation and can be accessed by helicopter from Dillingham roughly 137 kilometers to the southwest or Iliamna roughly 275 kilometers to the east-southeast.

The Kuskokwim Mountains region (which in this case includes the northwest part of the Alaska Range) was targeted in 1983 by Cominco American Inc. (Cominco) for the exploration of Bolivian-style tin deposits. Tin enrichment was discovered at the Sleitat prospect in association with sheeted, east-west trending greisen alteration. The greisen alteration extends across all phases of the highly evolved Sleitat granite stock and into the surrounding hornfelsed sediments. The Sleitat granite is massive, exhibits no internal preferred orientation and is comprised of biotite granite, biotite-muscovite granite, and zinnwaldite granite (St. George, 1985). Minor felsic dykes are noted around the intrusive boundary. The Sleitat granites have geochemical characteristics similar to the average tin-granite; namely a progression from the marginal biotite granite through to the zinnwaldite granite.

Cominco was active on the property in 1983, 1984 and 1988 when it identified the granitic intrusives and hornfelsed sediments on the property as prospective for tin-silver greisen deposits, and conducted various geological, rock and soil geochemical and geophysical surveys. Cominco also completed a total of 723.8m of BQ core drilling in 9 holes on the Sleitat project (a tenth hole was abandoned) during 1984 and 1988. The Cominco drill results indicate that the majority of the tin mineralization is hosted in steeply dipping tabular greisen bodies, separated by altered, but relatively barren zones of granite. The greisen zones are concentrated in two zones at the northern and southern margins of the Sleitat stock. High-grade brecciated greisen zones also exist in the system, as demonstrated in hole Cass 84-06 which intersected 3.1 m 12.55% Sn and 197.5 g/t Ag in re-sampled quartered core.

In 1989 the USBM evaluated the tin resource potential of the Sleitat property and inferred a "resource" of 28.6 million short tons (25.9M tonnes) of mineralized rock at a grade of 0.224 to

0.37% Sn, 0.04% W, and 17 g/t Ag based on representative surface samples and a depth projection based on Cominco drill holes (Burleigh, 1990). Burleigh's calculated "inferred resource" is an historic estimate and can **only** be considered conceptual as it **does not** meet the minimum requirements for classification as a CIM standard mineral resource. *The author believes that this historic estimate is relevant to the further evaluation, planning and exploration of the subject property, however this historic estimate is not current and is not compliant with CIM standard definitions. A qualified person has not done sufficient work to classify this historical estimate as current mineral resources. Neither the author nor Strongbow have verified the calculations and they are not reconcilable with current resource categories as specified by CIM standard definitions. A qualified person has not evaluated this historic estimate on behalf of Strongbow and comment cannot be made with respect to what work needs to be done to upgrade or verify the historical estimate estimate as current mineral resources. This historical estimate is reported here for information purposes only and should not be relied upon.*

In October of 2005, the author and Qualified Person Mr. William Ellis from AES conducted a field examination of the Sleitat property, identifying drill collars, collecting grab samples of mineralized greisen material and a total of seven stream sediment samples from creeks draining Sleitat. The Cominco drill core, which is now permanently stored at the Alaska Geologic Materials Center in Anchorage, was also examined and re-sampled in a few key mineralized sections to verify the nature and grade of the tin-silver mineralization. The 2005 work, which was completed with GPS control and the application of appropriate quality control and quality assurance measures, adequately repeated and verified the Cominco results, confirming the Sleitat Exploration Target as a significant occurrence with the potential to be an economic tin-silver deposit.

Based on review and confirmation of historic results and conclusions, two significant tin-silver targets were identified that were deemed to warrant further exploration drilling, including:

- The northern greisen, where all the Cominco drilling was completed, is open to the east, west and at depth; and,
- The untested southern greisen is hosted in hornfels rock along the south intrusive margin and could be indicative of an unroofed greisen zone or even a deeper cupola intrusive phase with associated roof greisen mineralization.

The 2005 stream sediment samples showed strong to highly anomalous tin and tungsten results peripheral to the mapped stock. Samples to the northwest, southwest and southeast suggest the mineralization could extend beyond the mapped greisenized granitic stock.

In 2006 Brett drilled 5 additional BTW core holes totaling 702.5 m (2305 ft), one of which twinned one of the earlier Cominco drill holes. Mr. Ellis of AES supervised this July 2006 drilling program which targeted the mineralized northern greisen and further substantiated the Cominco results indicating the presence of significant tin-silver mineralized greisen within the granitic intrusives. The 2006 drill core is now permanently stored at the Alaska Geologic Materials Center in Anchorage

In 2011 Osisko contracted AES to conduct an assessment mapping and sampling program that focused primarily on areas peripheral to the Sleitat stock that included pan concentrate sampling. This exploration work did confirm significant highly anomalous tin and tungsten anomalies that warrant follow-up prospecting and sampling. Although Mr. Ellis did not visit the property during the most recent 2011 exploration program, as principal of AES, he was involved with the planning and management of the 2011 program and is of the opinion that the program did not materially change the technical geologic information on the Sleitat Tin-Silver Exploration Target. Mr. Ellis has also confirmed with Brett and Thor that no additional exploration or evaluation work has been completed on the property other than the work managed and conducted by AES.

There appears to be up-side potential to extend the tin-silver mineralization at the north greisen zone and define additional tin-silver mineralization in the untested south greisen zone at the Sleitat prospect. Scattered cassiterite bearing quartz veins have been noted in the hornfels peripheral to the Sleitat stock along with narrow rhyolite porphyry dikes. That coupled with very anomalous tin and tungsten pan and sediment samples to the northwest, southwest, and southeast in hornfelsed sediments suggest areas that are prospective for buried tin bearing intrusions. A large airborne magnetic anomaly occurs on and to the southeast of the claims suggesting the presence a shallowly buried intrusion.

The very coarse-grained nature and the high variability of the tin and silver mineralization identified within the property is an issue that will need to be addressed in future drilling programs through the implementation of a robust QA/QC program including the collection of larger diameter core samples and analysis of multiple splits of each sample interval. This variability noted in the sample results could adversely affect the reliability tin and silver grade estimates of the Sleitat exploration target. Although continued exploration appears to be warranted at the Sleitat exploration target finding sufficient mineralization of a high enough grade for development in the very remote location is not assured.

AES recommends conducting a Phase I high resolution heliborne magnetic and radiometric survey to identify and delineate the potential extent of the tin mineralization in the two greisens zones and to prospect the areas peripheral to the stock. This survey is estimated to cost approximately \$50,000, the results of which could, if warranted, help focus a phased follow-up Phase II drilling program.

Phase II drilling would be contingent on the success of the detailed airborne magnetic and radiometric definition of the greisens zones and definition of new peripheral targets. If further drilling is warranted the use of larger diameter core samples (NQ, TWQ or HQ) is recommended, and that analytical protocols include analysis of multiple splits of key core intervals in order to address issues of 'nugget effect' caused by the coarse-grained variability of the tin and silver mineralization. If drilling is warranted then a 30 day helicopter supported field exploration program including a six hole 1000m (3280 ft) core drilling is estimated to cost \$375,000.

2.0 Introduction

Alaska Earth Sciences Inc. (AES) was retained by Strongbow Exploration Inc. (Strongbow) to carry out an independent assessment, confirmation of mineralization, compilation of historic data and to complete a NI 43-101 Technical Report on the Sleitat tin-silver deposits situated 137 km northeast of Dillingham in the Taylor Mountains Quadrangle of Southwest Alaska. This technical report is written by Mr. William T. Ellis, C.P.G. of AES in accordance with the revised regulations for National Instrument 43-101 (NI 43-101), Companion Policy 43-101CP and Form 43-101F1 supporting Strongbow's acquisition of the Sleitat property and for other required regulatory filings. Recommended work programs and budgets are provided at the end of this report.

AES utilized historical geological, geophysical, surface geochemical, and metallurgical data from reports prepared by Cominco Alaska exploration staff (Piekenbrock, 1983; St George, 1984; Farnstrom, 1988) and from USBM reports (Burleigh, 1990) to design and complete a limited confirmation and exploration drill program in 2006 which was supervised by Mr. Ellis of AES and summarized in a NI 43-101 technical report in 2007. The Cominco and USBM reports, data and core are archived at the Alaska Geologic Materials Center in Anchorage, Alaska as is the 2006 AES drill core.

Qualified Person Mr Ellis conducted an initial site visit in October of 2005, identifying drill collars, collecting grab samples of mineralized greisen material and a total of seven stream sediment samples from creeks draining Sleitat. Mr Ellis also supervised the 2006 core drilling program at the Sleitat Tin-Silver Exploration Target. Exploration program completed on the property in 2011 were conducted by AES focusing on areas peripheral to the Slietat Exploration Target. Mr. Ellis did not visit the property during the most recent 2011 exploration program however, as principal of AES, he was involved with the planning and management of the 2011 program and is of the opinion that the program did not materially change the technical geologic information on the Sleitat Tin-Silver Exploration Target. Mr. Ellis has also confirmed with Brett and Thor that no additional exploration or evaluation work has been completed on the property other than the work managed and conducted by AES.

This report confirms the occurrence of significant tin and silver mineralization at the Sleitat Exploration Target.

All quantified measures provided are metric. All dollars are US dollars (US\$).

List of abbreviations

AMA	Alaska Miners Association
aspy	arsenopyrite
ft	feet
g/t	grams per metric tonne
ha	hectare(s)
kg	kilogram(s)
km	kilometre(s)

m	metre(s)
opt	ounces per short ton
C.P.G.	Professional Geologist (Alaska designation)
ppb	parts per billion
ppm	parts per million
ру	pyrite
Ag	silver
As	arsenic
Sn	tin
U	uranium
W	tungsten

3.0 Reliance on Other Experts

William Ellis is a certified (CPG #8719) and licensed geologist (Alaska #548) with over 40 years exploration experience in Alaska. Mr. Ellis has expertise in this type of tin-silver system including exploration in southwest Alaska for a major mining company that dates back to the early 1980s.

The interpretive views expressed herein are those of the author and may or may not reflect those of Strongbow.

4.0 **Property Description and Location**

4.1 *Property Location*

The Sleitat project area is located in the Taylor Mountains Quadrangle of Southeast Alaska, 410 km southwest of Anchorage (section 31, T1S, R45W, of the Seward Meridian). Sleitat is located 35 km northeast of the village of Koliganek on the Nushagak River, 137 km northeast of the port of Dillingham on Bristol Bay and 275 km west-northwest of the village of Iliamna (Figure 1).

4.2 Land Status

The Sleitat project is held by twenty-two 160 acre State of Alaska mining claims covering approximately 1,425 hectares (3,520 acres) within the Bristol Bay Recording District (Figure 2). The CAS 1 to 22 claims were held 100% by Thor Gold Alaska Inc., ("Thor"), originally a 100% owned, State of Alaska registered subsidiary of Solomon Resources Limited ("Solomon") of Vancouver, BC.

The CAS claims were staked June 1, 2005 by contract stakers and transferred to Thor on August 1, 2005. The northwest corner post for claim CAS 17 was observed in the field by the author. Brett Alaska Resources Inc. ("Brett") subsequently optioned the property on July 27, 2005 and ultimately earned an 80% interest in the claims. Brett was subsequently acquired by Osisko Gold Royalties Ltd. ("Osisko") in 2010 and in 2013 Thor was acquired from Solomon by Ronald K. Netolitzky ("Netolitzky").

In 2015 Strongbow entered a property purchase agreement with Osisko and Netolitzky to acquire their respective interests in the CAS claims and the Sleitat property. The acquisition is part of a larger acquisition including the Coal Creek tin project, Alaska. Total consideration for the acquisition of the Sleitat and Coal Creek projects is 6,500,000 shares of Strongbow, with 5,000,000 shares allocated to Osisko and 1,500,000 shares to Netolitzky, and a 2% NSR royalty on the property. The NSR royalty will be allocated 1.75% to Osisko and 0.25% to Netolitzky. Strongbow will also grant Osisko a first right of refusal on the sale of any future royalties on the property. Netolitzky is a director of Strongbow and therefore is a non-arms length party to the transaction.

Annual claim rents on the CAS claims are due and payable by November 30 of each year for State mining claims. The total 2014-2015 rents due was US\$14,960. The annual work commitment on State mining claims total US\$2.50 per acre per year (US\$8,800) and amounts spent in excess of these levels are bankable for up to four years into the future. As of December 1, 2014 there is \$4,080 available to carry forward for annual work commitments. If no assessment work is done during 2015 a \$4,720 payment in lieu will be due by September 1, 2015 and an annual rental payment of \$14,960 will be due by November 30, 2015. All claims on the Sleitat prospect currently are in good standing.

The claims of the Sleitat project have not been surveyed by a registered land or mineral surveyor nor is such surveying required. Except for minor disturbances (survey grid pickets, exposed drill anchor stems, small hand excavated trenches), the site remains undeveloped. All drill core has been removed from site and is now stored in the Alaska Geologic Materials Center. Based on visual inspection and confirmation from AES personnel who visited the property during the 2011 program, there are presently no environmental issues in the Sleitat area. Exploration activities including drilling and trenching on state lands are routinely permitted with an Alaska Placer Mining Application (APMA) and temporary water use permits. APMA and temporary water use permits for future drilling work can be acquired from the Alaska Department of Natural Resources on an as-needed basis.

The author is not aware of any unusual social or political encumbrances to exploration, or the potential future development on or production from the Sleitat property.

			Seward Meridian						
Claim Name	Post Date	Recording District	Township	Range	Section	Q Sect	ADL No.	Record Document	
CAS 1	June 1, 2005	Bristol Bay	1 S	46 W	25	NW	650074	2005-000518-0	
CAS 2	June 1, 2005	Bristol Bay	1 S	46 W	25	NE	650075	2005-000519-0	
CAS 3	June 1, 2005	Bristol Bay	1 S	45 W	30	NW	650076	2005-000520-0	
CAS 4	June 1, 2005	Bristol Bay	1 S	46 W	25	SW	650077	2005-000521-0	
CAS 5	June 1, 2005	Bristol Bay	1 S	46 W	25	SE	650078	2005-000522-0	
CAS 6	June 1, 2005	Bristol Bay	1 S	45 W	30	SW	650079	2005-000523-0	
CAS 7	June 1, 2005	Bristol Bay	1 S	45 W	30	SE	650080	2005-000524-0	
CAS 8	June 1, 2005	Bristol Bay	1 S	45 W	29	SW	650081	2005-000525-0	
CAS 9	June 1, 2005	Bristol Bay	1 S	46 W	36	NW	650082	2005-000526-0	

Table 1 Sleitat Property Claim List

CAS 10	June 1, 2005	Bristol Bay	1 S	46 W	36	NE	650083	2005-000527-0
CAS 11	June 1, 2005	Bristol Bay	1 S	45 W	31	NW	650084	2005-000528-0
CAS 12	June 1, 2005	Bristol Bay	1 S	45 W	31	NE	650085	2005-000529-0
CAS 13	June 1, 2005	Bristol Bay	1 S	45 W	32	NW	650086	2005-000530-0
CAS 14	June 1, 2005	Bristol Bay	1 S	46 W	36	SW	650087	2005-000531-0
CAS 15	June 1, 2005	Bristol Bay	1 S	46 W	36	SE	650088	2005-000532-0
CAS 16	June 1, 2005	Bristol Bay	1 S	45 W	31	SW	650089	2005-000533-0
CAS 17	June 1, 2005	Bristol Bay	1 S	45 W	31	SE	650090	2005-000534-0
CAS 18	June 1, 2005	Bristol Bay	1 S	45 W	32	SW	650091	2005-000535-0
CAS 19	June 1, 2005	Bristol Bay	2 S	46 W	1	NE	650092	2005-000536-0
CAS 20	June 1, 2005	Bristol Bay	2 S	45 W	6	NW	650093	2005-000537-0
CAS 21	June 1, 2005	Bristol Bay	2 S	45 W	6	NE	650094	2005-000538-0
CAS 22	June 1, 2005	Bristol Bay	2 S	45 W	5	NW	650095	2005-000539-0

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Access

Access to the Sleitat project area is primarily by helicopter, although it is possible that a small fixed wing aircraft equipped with tundra tires could land on the lowland plain south of Sleitat. The Nushagak River is navigable by barge to the village of Koliganek from June to November. A state owned, 3,000 foot gravel runway, reportedly suitable for DC-6 air transports, is also located in Koliganek 40 km to the south. There are no roads, winter trails or electric power grids in the vicinity or connecting between the villages in the region. The exploration season runs from May to the end of September.

5.2 *Climate*

The area is in a climatic transition zone where the primary influence is maritime, although continental high pressure weather systems often have an influence. Average summer temperatures range from 3° C to 19° C; winter temperatures range from -15° C to -1° C. Annual precipitation ranges from 500mm to 900mm. Fog and low clouds are common during the summer and fall, especially around higher elevation areas; very strong winds persist during the winter.

5.3 Local Resources and Infrastructure

The Sleitat project area is located on state land in an uninhabited area within the boundaries of the Bristol Bay Native Corporation region. The population of Dillingham, the closest regional centre, is roughly 5,000 persons of 70% Alaska Native heritage and 76% high school graduate education. The village of Koliganek, the closest village, has a population of roughly 185 persons. Residents practice a fishing and subsistence lifestyle. Communities in southwest Alaska rely on 100% local diesel generated electric power. Access is either by air, riverboat or barge. Temporary bunk house facilities are available in Koliganek for small crews.

5.4 Physiography

The Sleitat project is centered on the highest point along a 20 kilometre long, northeast trending set of bedrock hills within the Bristol Bay Lowland physiographic region (Figure 2). Sleitat Mountain rises to an elevation of 603 meters, roughly 500 meters above the extensive surrounding lowland plains. Large locally derived, frost heaved boulders and thin soil cover the peak area at Sleitat, which is rounded and plateau-like with moderately steep, talus covered slopes. The surrounding, rolling lowland is underlain by thick deposits of glacial gravel and ablation till outwash that is pockmarked with numerous small kettle lakes. The property is drained by small secondary tributaries of Harris Creek to the south and an un-named creek to the north, each of which flows west through wetlands to the meandering and oxbowed Nushagak River, 13 km to the west.

Vegetation at Sleitat is largely limited to alpine tundra grasses and lichen at the higher elevations. Shrub poplar occurs at lower elevations along stream drainages and isolated small black spruce trees dot the surrounding lowland areas. Small local stands of black spruce are present along the Nushagak River lowland (van Hees, 1999).

6.0 History

The Eskimo word Sleitat means whetstone, a possible reference to the area as a source of the hard, flinty hornfels rocks that occur there.

6.1 *Exploration History*

6.1.1 1984 and 1988 Cominco Alaska Drilling Work

Tin-silver mineralization was first identified at Sleitat in 1983 by regional prospecting crews working on the Kuskokwim Project, a regional geochemical survey designed to identify tin-silver and gold-silver prospects. The Kuskokwim Project was a joint venture program between Cominco American Inc. (Cominco) and Enstar Resources Corporation.

The Cass 1-72 claims were staked in 1983 at Sleitat to cover a siliceous multi-phase granite complex and associated sheeted greisen zones hosting cassiterite-arsenopyrite mineralization. Prospecting, geological mapping, 1.0 km by 0.8 km grid controlled trace element lithogeochemical sampling and a four line IP geophysical survey were also completed at this time (Piekenbrock, 1984). In 1984, Cominco crews completed additional detailed geological mapping, a limited ground magnetic survey, and preliminary metallurgical testing on 27 kilograms of greisen material and seven BQ core drill holes totalling 493.7m (St. George, 1985). A trace element lithogeochemical survey of the hornfels host rocks, begun in 1983, was expanded in 1984 with the objective to identifying pathfinder elements that could assist in the discovery of similar deposits in the region. Cominco returned in 1988 and drilled two additional holes (a third hole was abandoned at a depth of 14.9m) totalling 230.6m. A limited program of grid-controlled geochemical soil sampling was also undertaken in 1988 (Farnstrom, 1989).

In 2001, 100% of ownership of the Sleitat property was transferred to Cominco. All survey sites were located using a local grid, with no UTM, latitude/longitude or other universal references. The Sleitat claims were dropped by Cominco in 2003.

Geophysical Surveys: Cominco 1983, 1984; USBM 1989; USGS 2004

A variety of geophysical ground surveys have been conducted on the Sleitat deposit since 1983, including 4 lines of IP, two magnetic surveys, VLF-EM and radiometric surveys. A regional scale aeromagnetic survey was flown over the area by the USGS in 2004. Of the ground surveys only the 1989 magnetic and radiometric surveys by the USBM were completed at enough detail, using reliable results and had sufficient data backup to be considered useful. The 1983 Cominco IP survey data and results are not available, the 1984 Cominco magnetic survey was too limited in coverage and the 1989 USBM VLF-EM survey lacked suitable data. Details, results and conclusions drawn from the 1989 magnetic and radiometric surveys and the 2004 aeromagnetic survey are summarized below:

Magnetics

1989: USBM: Geometrics UNI-MAG II proton magnetometer; grid roughly 1 km x 1 km with stations spaced 15.3m (50 ft) along eleven 122m spaced lines.

The survey did not define greisen zones. The survey does define the granite stock based on rapid decreases in magnetic susceptibility away from the contact in all directions. A vertical cylindrical geometry is interpreted for the stock based on the magnetic high being off-centered toward the south (north-side-low; stock = dipole) as a consequence of the steep inclination of the earth's magnetic field at high latitudes (Burleigh, 1991).

2004: USGS: Aeromagnetic Survey of the Taylor Mountains Quadrangle; McPhar Geosurveys Ltd. Flown at a flight-line spacing of 1600m (1mile) and a nominal flight height of 305m (1000 feet).

The survey did not define greisen zones. The survey does define an NE-SW elongate aeromagnetic high associated with and extending beyond the southern end of the mapped granite intrusive (Figure 3). The drilled greisen area lies 400m (¼ mile) northwest of this magnetic high. The aeromagnetic survey clearly defines the northeast trending Mulchatna Graben structure on which the greisen is centered on its southern fault strand. Additional aeromagnetic highs lie along both strands of the graben that could be prospective for other mineralized intrusive systems.

Radiometrics

1989: USBM: Scintrex GIS-Gamma Ray Spectrometer; station spacing 15.3m (50 ft) with 10 second integration times.

The Radiometric survey was useful in defining both the boundary of the granite stock and the greisen zones within it. The greisen zones show a slightly weaker relative radiometric signature resulting from the partial destruction in radioactive elements. Elevated signatures along the south boundary where hornfels rubble obscures the geology are interpreted as being indicative of possible unroofed greisen zones (Burleigh, 1991).

2005, 2006, 2011 Brett/Osisko Exploration Work

Solomon acquired the property by staking new claims on June 1, 2005. Brett optioned the property in August, 2005 and conducted a site visit and stream sampling program with William Ellis of AES in October of 2005 (Ellis, 2006). Subsequent to the initial verification phase, during 2006 AES under the direction of William Ellis completed an additional 702.5 m (2305 ft) of exploration drilling in 5 holes on the Sleitat property to verify and further delineate the mineralization on the property (Ellis, 2007) (See Section 10, below). During the summer of 2011 AES conducted mapping and sampling peripheral to the Sleitat stock extending the hornfelsed zone 500 to 1000 meters to the northwest and southwest (Thurow, 2011) (see Section 9, below). Pan concentrate samples collected confirmed highly anomalous tin and tungsten values noted by the USBM survey (Burleigh, 1990). This exploration did not materially change the technical geologic information of Sleitat Exploration Target.

6.2 Historical Sleitat Tin Resources Estimates – USBM

In June 1989, the property was the subject of a detailed geological, geochemical, geophysical and resource evaluation undertaken by US Bureau of Mines (USBM) (Burleigh, 1991). Burleigh's work included detailed petrological, mineralogical and igneous geochemistry studies, magnetic, VLF and radiometric geophysical surveys, soil and panned stream concentrate geochemical surveys and a detailed lithogeochemical survey. Burleigh also collected and analyzed an 816 kilogram bulk sample. Burleigh also estimated an *"inferred resource"* for the Sleitat tin mineralization, although this is based primarily on surface geological and sample data collected from frost heaved sub-crop.

Burleigh's estimated "inferred resource" of 28.6 million short tons (25.9 tonnes) of mineralized greisen at an average grade of 0.224% to 0.37% Sn can **only** be considered conceptual as it **does not** meet the minimum requirement for classification as a C.I.M. standard mineral resource. The author believes that this historic estimate is relevant to the further evaluation, planning and exploration of the subject property, however this historic estimate is not current and is not compliant with CIM standard definitions. A qualified person has not done sufficient work to classify this historical estimate as current mineral resources. Neither the author nor Strongbow have verified the calculations and they are not reconcilable with current resource categories as specified by CIM standard definitions. A qualified person has not evaluated this historic estimate on behalf of Strongbow and comment cannot be made with respect to what work needs to be done to upgrade or verify the historical estimate as current mineral as current mineral resources only and should not be relied upon. The historic estimate was based on four criteria: 1) surface area of greisen zones as mapped, 2) a ratio of greisen/granite as derived from the composite number of chips in four periodic chip sample

lines, 3) a five hundred foot (152m) depth projection, 4) a tonnage factor of 12 ft³/st. The maximum depth of Sn mineralization drilled by Cominco was 350 feet (107m).

7.0 Geological Setting and Mineralization

The Sleitat tin deposit is the most significant known major tin prospect in southwest Alaska (Burleigh, 1991). The Kuskokwim Mountains region (which in this case included the northwest part of the Alaska Range) was targeted in 1983 by Cominco for the exploration for Bolivian-style tin deposits based on four basic observations, namely its:

- Back-arc setting with a transition from I-type to S-type intrusions;
- Numerous volcanoplutonic complexes;
- Widespread and intense tourmaline alteration; and,
- Association with gold/tin placers.

Following the 1983 field season, Cominco geologists refined the parameters of their search with the classification of three distinct intrusive suites within the Kuskokwim-Alaska Range region. Tin enrichment was identified to be associated with highly evolved, granitoids including quartz monzonite, granites and specialized biotite granite porphyries (Sleitat). Gold affinity was determined to be associated with high level quartz porphyries (Shotgun Hills) and subalkalic (monzonitic) volcanoplutonic complexes (Piekenbrock, 1984).

More recent studies have further refined the regional geologic history of the Sleitat area, as summarized below.

7.1 Regional Geology

Sleitat is underlain by an isolated, roughly 40 hectare peraluminous granitic stock that intrudes sandstones and shales of the late-Early Cretaceous to Late Cretaceous Kuskokwim Group (Figure 3). The Kuskokwim Group flysch sequence depositionally overlaps the surrounding terranes to the north and northwest, but terminates along the northeast trending Mulchatna-Chilchitna fault zone. Late Triassic to Early Jurassic Chilikadrotna greenstones and Late Jurassic to Early Cretaceous Koksetna turbidites of the Kahiltna terrane occur south of the Chilchitna Fault. A strong penetrative fabric developed in the Kuskokwim Group, possibly during the steep juxtaposition of the Kuskokwim Group over the Kahiltna assemblage, is considered to predate the oldest pluton in the region dated at 71 Ma (Wallace et al, 1989; cited in Burleigh, 1991). The Sleitat stock, dated at 56.6 ± 2.8 Ma postdates this major regional tectonic event by 11 to 16 Ma (Burleigh, 1991).

The Sleitat stock occurs in a central, northeast trending region of magmatic quiescence situated between and overprinted by parallel magmatic belts of the Kuskokwim Mountains (modal age 70 Ma) to the northwest and the Alaska Range (modal age 56 Ma) to the southwest (Burleigh, 1991). Associated with the late Cretaceous to early Tertiary Alaska Range-Talkeetna Mountains volcanic-

plutonic belt, the Early Tertiary Sleitat granite stock is possibly the western most and youngest of a series of similar stocks and plutonic complexes that include the granitoid plutons and associated tin-molybdenum deposits of the McKinley Sequence in the Mount McKinley area (Nokleberg et al, 2003).

Tectonic activity in southwest Alaska during Cretaceous to Recent times is dominated by movement along major northeasterly trending strike-slip and thrust faults. This movement resolves compressional stresses related to the northwest motion and subduction of the Pacific Plate beneath the North American Plate. The Sleitat stock lies on the southeast fault strand of the Mulchatna fault which appears to be a four mile wide graben structure in the regional magnetic data (Figure 3).

7.1.1 Kuskokwim Tin Belt

More than 100 widely distributed and varied tin occurrences are known in Alaska, distributed from the Seward Peninsula through central Alaska and the Alaska Range, and from the Brooks Range south to southwest Alaska (Hudson & Reed, 1997). In addition to their wide distribution, lode tin deposits have developed over multiple episodic periods (Devonian, mid-Cretaceous, Early Tertiary, and Miocene) suggesting that a large part of Alaska is a tin metallogenic province (Hudson & Reed, 1997).

Conflicting analysis is provided to explain the wide distribution of Tertiary peraluminous, crustally derived granite-associated tin occurrences in southwest (Sleitat), south central (Coal Creek, Mount McKinley area) and central interior (Win and Won, McGrath) Alaska.

Nokleberg and others (2003) include the Sleitat deposit in the Southern Alaska metallogenic belt, which includes the McKinley sequence granites and granodiorites. Nokleberg interprets the McKinley sequence granitoid plutons to have formed "...during the crustal contamination of magmas from early Tertiary subduction along the southern margin of Alaska."

Hudson (1994; cited in Hudson and Reed, 1997) suggests that "...higher heat flows accompanying Late Cretaceous subduction-related magma emplacement into the crust led to early Tertiary crustal melting, granite emplacement and associated tin mineralization."

7.2 Property Geology

Sleitat is a topographic glacial remnant preserved largely due to the presence of the small, early Tertiary Sleitat granite stock and surrounding, weathering resistant hornfels aureole developed in Early to Late Cretaceous Kuskokwim Group flysch deposits (Figure 4). The Sleitat granite is a multiphase stock comprised of biotite granite, biotite-muscovite granite, and zinnwaldite granite. The granites are massive and show no preferred orientation (St. George, 1985). Greisen alteration extends east-west through all the granite phases and into the surrounding hornfels. Minor felsic dikes are noted around the intrusive boundary.

The granitic stocks associated with tin deposits exhibit distinct geochemical signatures. The Sleitat granites have geochemical characteristics similar to the average tin-granite; namely a progression from the marginal biotite granite through to the zinnwaldite granite that exhibits a systematic

increase in Na₂O, Al₂O₃ and peraluminous index (molecular Al₂O₃/Na₂O+CaO+K₂O). Trace element plots of gallium versus zirconium, niobium, rubidium, and yttrium further suggest a singular melt fraction that underwent alteration from the core to the margins (Burleigh, 1991).

The following description of the local geology of the Sleitat Mountain area is summarized from more detailed petrographic studies completed by the USBM (Burleigh, 1991) and Cominco (Piekenbrock et al, 1984; St. George et al, 1985). The following includes both the nomenclature used by Burleigh and by Cominco (in brackets; adapted for this report to reflect the early Tertiary age determination for the intrusive units).

<u>Dikes</u>

Dikes associated with the Sleitat intrusive have been mapped trending east-northeast and proximal to the intrusive-Kuskokwim Group contact. Burleigh (1991) identified two distinct dike units, while Cominco identified three. These include:

- Muscovite-feldspar porphyry (Tmfs; local tin greisen alteration);
- Quartz-feldspar porphyry (Tafs; tourmaline absent); and,
- Biotite quartz porphyry (Kmbfs; Cominco).

The dikes have been mapped as extending northeast from the stock, parallel to the Mulchatna fault (Burleigh, 1991). Cominco suggested that the muscovite-feldspar porphyry and the biotite quartz porphyry could correlate to the zinnwaldite and muscovite-biotite granites of the Sleitat complex respectively.

Quartz Greisen (eTqg)

Cominco's description of the greisen alteration as a separate unit has been adopted in this report.

Strong greisen alteration extends in closely spaced, sub-parallel east-west trending and vertical dipping tabular bodies across all of the main granite units and into the surrounding hornfels at Sleitat. Individual greisen alteration bands vary in thickness from a few centimeters to roughly 6m wide, separated by altered or unaltered granite. Two main greisen zones have been identified including: the roughly 900m long by 300m wide north zone; and the less densely banded, roughly 400m long by 250m wide south zone. The south greisen extends to the east under frost heaved hornfels rubble material, suggesting it may only be partially unroofed.

The greisen alteration consists of abundant fine-grained to granular quartz and topaz with associated white mica and minor disseminated blue-green tourmaline. The greisen is typically massive and displays no preferred internal orientation (Cominco, 1985). Minor irregular vein-like tourmaline zones also cut through the greisen (Burleigh, 1991). Cominco (1985) determined a mineralogy using petrographic methods that is dominated by quartz (81%) with subordinate topaz (9%), white mica (sericite?) (7%), tourmaline (3%), minor cassiterite (<1%), hematite (<1%), and trace apatite. The greisen zone is the predominant host for tin mineralization.

Tin mineralization within the greisen varies from 0.5% fine disseminated cassiterite to central quartz veinlets with local high concentrations up to 40%-60% of fine to coarse cassiterite. In hole Cass 84-06, very high grade tin mineralization was encountered in a zone of brecciated greisen. The 3.1 meter section (from 20.4m - 23.5m; estimated true width 1.55m) ran 12.55% Sn and 197.5 g/t Ag.

Biotite Granite (eTbg)

The biotite granite is a minor constituent of the Sleitat complex, occurring primarily as isolated small bodies (<30m diameter) within the muscovite-biotite granite near the northwest intrusive contact. Burleigh (1990) describes the biotite granite as follows:

The biotite granite consists of hypidiomorphic, fine- to medium sized grains of quartz, alkali-feldspar (perthite), plagioclase, biotite, topaz and garnet with seriate to weakly porphyritic texture. ... The perthite and quartz exhibit bimodal grain sizes with... the other minerals... fine grained and generally anhedral. Quartz is present as 1-5 mm diameter grain aggregates... and as anhedral grains 0.5 mm or less in diameter. Alteration in the biotite granite is weak, and consists of feldspars, 10-20% altered to sericite, and re-brown "book" biotite 0-5% altered to fine-grained green biotite.

Zinnwaldite Granite (eTzg)

The zinnwaldite granite occupies the central and largest part of the Sleitat intrusive complex. The unit is considered to be relatively younger than the biotite-muscovite granite based on chill margins observed in drill core where the two units are in contact (St. George, 1985).

The zinnwaldite granite is distinguished by the general absence of biotite, less well defined porphyritic, more equigranular textures, clear quartz in addition to smoky quartz and common presence of white quartz veinlets. Cominco visually estimated the following average mineralogy from thin section: quartz 53%; alkali-feldspar (perthite) 23%; plagioclase 18%; zinnwaldite/sericite 3%; trace biotite; tournaline 1%; topaz 1%; apatite <1%; trace arsenopyrite; and trace zircon (St. George et al, 1985).

Burleigh (1991) describes the unit as follows:

The zinnwaldite granite...is fine-grained, but textures vary from distinctly hypidiomorphic equigranular to micro-scale xenomorphic seriate. Alkali feldspar is present to 4mm, anhedral to subhedral tabular grains and 0.1-0.2mm anhedral grains. ...Small grains of quartz, plagioclase, and alkali feldspar are included in the larger alkali feldspar crystals. In some samples, quartz is present as rounded aggregates...and as interstitial grains. Light grey-brown pleochroic to colorless, white-mica occurs as ragged anhedral grains ranging in size from <0.1-1.0mm. ...An X-ray Photoelectron Spectroscopy (XPS) evaluation of the white micas suggests zinnwaldite as the most feasible composition.

The occurrence of tourmaline in the zinnwaldite granite varies based on the texture exhibited.

Blue to blue-green tourmaline is present in concentrations that range from <<0.5-5% [by volume] of the zinnwaldite granite. In the hypidiomorphic...zinnwaldite granites ...tourmaline and topaz appear unaltered and subhedral. The more seriate textured granites (bimodal quartz) contain low concentrations of tourmaline, present as net-textured replacements in alkali-feldspar. Topaz forms colorless grains up to 1mm size and always spatially associated with zinnwaldite and tourmaline.

Biotite-Muscovite Granite (eTbmg)

Proposed as the oldest phase of the Sleitat stock (St. George et al, 1985), the biotite-muscovite granite occurs as an arcuate outlier to the north, west and south of the zinnwaldite granite.

The biotite-muscovite granite is distinguished by the presence of both muscovite and biotite, large (up to 10mm) dark smoky quartz eyes and common presence of garnet and iron staining. Cominco visually estimated the following average mineralogy from thin section: quartz 62%: alkali-feldspar (perthite) 28%; plagioclase 6%; muscovite/sericite 1%; biotite 1%; garnet <1%; apatite <1%; topaz <1%; hematite <1%; and limonite <1% (St. George et al, 1985).

Burleigh (1991) describes the unit as follows:

The biotite muscovite granite is generally fine- to medium-grained (up to 10mm) weakly seriate to equigranular textured, and contains varied trace amounts of topaz, garnet and tourmaline. ...Alkali feldspar (perthite) is present as medium (up to 10mm) subhedral, tabular grains and smaller anhedral grains. ...Albite (10-20%) occurs as 0.1-3mm anhedral grains that are often zoned. ...Quartz is present as <0.1 to 10mm grains. Biotite is subhedral to anhedral and typically is altered to muscovite along grain edges and/or embayed by coarse-grained white mica. ...The light red-brown "bleached" biotite and secondary muscovite commonly contains trains of rutile indicating titanium mobilization during biotite alteration. ...Interstitial minerals are markedly finer-grained, anhedral and include topaz, tourmaline and muscovite that are intimately associated with abundant very fine grained quartz.

Hornfels (Kfh)

In the Sleitat area, the Kuskokwim Group sediments have undergone intense hornfels alteration. The thermal metamorphic aureole extends between 350m to over 1,000m away from the Sleitat pluton contact with which it is associated. Cominco presented this as a separate unit that is adopted here. The unit is typically fine grained, composed of quartz, plagioclase, clays, mica, chlorite, tourmaline, hematite, arsenopyrite, pyrite and zircon. No obvious mineralogic zonation has been identified in the hornfels, although aligned, dark megascopic spots are common. The spots are likely a thermal metamorphic alteration and are variably composed of tourmaline, biotite, sericite and clays (St. George, 1985).

Late Cretaceous Kuskokwim Group (Kf)

Kuskokwim Group rocks are comprised of interbedded light to dark grey with minor green flysch sediments of sandstone and shale. No conglomerate or fossiliferous units have been identified (Piekenbrock, 1983). The unit displays massive to foliated textures.

7.2.1 Faults

Due to limited outcrop exposures, structural data on the property is severely limited. No attitudes are reported for the Kuskokwim Group sedimentary rocks, although regionally they are reported to exhibit mild folding and faulting (Nokleberg, 2003).

The only mappable structural element is the pervasive near vertical, east-west orientation of the greisen alteration bands within the north and south greisen zones. The greisen has been noted to refract to a northeast-southwest trend as it crosses into the hornfels.

7.2.2 Alteration

The alteration types noted at Sleitat are dominated by the hornfels metamorphism of the surrounding clastic host rocks and the mineralizing greisen. The hornfels are described in more detail above.

By definition, a greisen is a cassiterite-mineralized, tourmaline, mica (sericite, zinnwaldite) and topaz pneumatolytic alteration of granite rock. Generally the greisen at Sleitat consists of primarily find-grained quartz and topaz with lesser white mica and disseminated blue-green tourmaline. Open-spaced voids with clay are common in intense greisen altered zones where feldspar and phyllosilicate minerals have been destroyed and partially replaced by quartz, topaz, white mica and tourmaline.

Iron oxide and arsenic oxide (scorodite) staining are present, although the latter is present only locally. Sulphides are not common; however the oxide staining and small disseminated voids present suggest the greisen was host to roughly 1% to 5% original sulphide content (Burleigh, 1990).

7.3 Mineralization

Tin mineralization at Sleitat is present primarily as cassiterite in all granite units and the hornfels. The primary metallic minerals present are:

Cassiterite	Arsenopyrite	Loellingite
Sphalerite	Wolframite	Pyrite

Accessory minerals identified by scanning electron microscopy analysis (Burleigh, 1990) include:

Stannite	Chalcopyrite	Bismuth-Arsenic Compounds
Bornite	Bismite	Ferrotantalite

Cassiterite is the primary economic mineral present at Sleitat and occurs most commonly disseminated in the massive greisen zones in euhedral grains of less than 1 mm (Burleigh, 1990). Work by the USBM also identified cassiterite as 1mm to 1.5cm grains concentrated in 1cm to 10cm wide quartz-sericite vein zones and as rare open spaced veinlets with wolframite in the hornfels. Coarse tabular wolframite and anhedral arsenopyrite occur in sporadic vuggy quartz veins up to 60 cm wide throughout the deposit. Arsenopyrite also occurs as clots throughout the deposit, although commonly oxidized to scorodite. Arsenopyrite has been shown by scanning electron microscope (SEM) to contain micron sized inclusions of bismite and a bismuth-arsenic

mineral. Sphalerite rarely occurs disseminated in the greisen zones and contains micron-sized inclusions of bornite, chalcopyrite and stannite.

The source of the silver has not been specifically identified, but is likely associated with the arsenopyrite, sphalerite and bismuth-arsenic compounds (silver sulphosalts?) or as native inclusions. Secondary hematite and scorodite are also common in the weathered greisen.

8.0 Deposit Types

Tin deposits include a range of mineralization styles that include tin-quartz veins, replacement skarns, exogreisens, roof greisens and sheeted greisens (Hudson & Reed, 1997). It is generally regarded that all tin deposit types comprise hydrothermal systems evolved from fractionated magmatic systems that are derived from complete or partial melting of the continental crust (Hudson & Arth, Taylor; cited in Burleigh, 1990; Hudson & Reed, 1997). Sheeted tin greisen deposits represent the deeper root of a tin system and are represented in Alaska by the Coal Creek occurrence on the east flank of the Central Alaska Range and at Lost River on the Seward Peninsula, the only significant producing tin lode deposit.

The Cominco drill results, and AES's 2006 drilling, indicate that the majority of the tin mineralization on the Sleitat property is hosted in steeply dipping tabular greisen bodies, separated by altered, but relatively barren zones of granite. The greisen zones are concentrated in two zones at the northern and southern margins of the stock. High-grade brecciated greisen zones also exist in the system, as demonstrated in hole Cass 84-06 which intersected 3.1 m 12.55% Sn and 197.5 g/t Ag. The greisen mineralogy is described in greater detail under Property Geology above.

8.1 Deposit Type

The Sleitat style of mineralization is best classified as a deeply eroded, sheeted tin greisen. However, the presence of mineralization hosted in hornfels rock along the south margin could be indicative of an unroofed greisen zone or even a deeper cupola intrusive phase with associated roof greisen mineralization (Hudson & Reed, 1997).

The Sleitat tin exploration target is isolated from other known mineral occurrences in the region and is considered to be the southwestern-most of a string of similarly isolated Tertiary granitehosted greisen tin occurrences extending southwest from the Central Alaska Range. A number of minor tin prospects occur in the region, as typified by the LC and Kody roughly 70 to 85 kilometers to the northeast and the KUSK roughly 45 km to the northwest. At the LC and the KUSK, minor quartz-cassiterite veins occur in hornfels altered Kuskokwim sediments, suggesting the potential for a buried greisen altered granite (St. George, 1985). At Kody tin-bearing greisenized intrusive and quartz-cassiterite veins occur in hornfels altered sediments.

9.0 Exploration

The work completed by the author William Ellis in producing the initial report (Ellis, 2006) was limited to verification sampling and analysis of 7 stream sediment samples and 2 subcrop grab samples in the field and 22 re-split Sleitat core samples from the Cominco core stored at the Alaska Geological Materials Center core library at Eagle River, Alaska.

Subsequent to the initial verification phase of the work, a 5 hole exploration drill program was completed on the property during the summer of 2006 (Ellis, 2007). Hole locations for both Cominco's 1980's drilling and AES's 2006 drilling are shown on Figure 4 and are compiled with updated UTM coordinates in Appendix II. The exploration work reported herein is based on the historic results from Cominco's exploration programs in the 1980's and the exploration drilling completed by AES during the summer of 2006.

During the summer of 2011, AES conducted mapping and sampling peripheral to the Sleitat stock, extending the hornfelsed zone 500 to 1000 meters to the northwest and southwest. Fourteen pan concentrate samples were collected from a 12 square kilometer area (7.5 square miles) which confirmed highly anomalous tin and tungsten values noted by the USBM survey (Burliegh, 1991). The tin and tungston sample results are noted on figure 4. This exploration was encouraging; however it did not materially change the technical geologic information of Sleitat Exploration Target.

10.0 Drilling

Drilling – Cominco 1984 and 1988

Cominco completed a total of 723.8m of BQ core drilling in 9 holes on the Sleitat project (a tenth hole was abandoned) during 1984 and 1988. Narrow vein intervals of greater than 0.1% tin are common, notably in holes Cass 84-02, -05 and -07, and Cass 88-08 and -09a. Neither minimum nor maximum cut off values were applied to either the tin or the silver results shown in the table below.

The most significant results reported by Cominco were in holes Cass 84-06 and Cass 88-08, which were collared at dips of -60° only 24.4 meters (80 ft) apart on the same section, L52+00E. Hole Cass 84-06 intersected a 3.10m hydrothermal breccia zone (approximately 1.55 m true width) that assayed 12.55 % Sn and 197.5 g/t Ag. Hole Cass 88-08 intersected a 7.92 meter (approximately 3.96 m true thickness) interval of the same material 30.5 meters (100 ft) down dip that assayed 0.50 % Sn and 14.0 g/t Ag. The grade of hole Cass 88-08 is notably consistent over a 61.26 meter width (approximately 30.63 m true thickness), averaging 0.36% Sn (compared to 0.38% Sn) when a 0.1% Sn cut off grade is applied. Hole Cass 84-06 averaged only 0.34 % Sn (compared to 1.56 % Sn) over 29.1 meters (approximately 14.6m true thickness) with a 0.1% Sn cut off grade applied.

The drill core from the 1984 and 1988 Cominco drilling was found to be in excellent condition in permanent storage at the Alaska Geological Materials Center in Eagle River near Anchorage. Except for the core from abandoned hole Cass 88-09, 100% of the 1984 and 1988 core was split

(hand split or sawn) and sampled in the field by Cominco crews. Full drill logs and sample results are available in St. George (1985) and Farnstrom (1988), however no information is available regarding the sampling or analytical procedures used. The 1984 samples were analyzed for tin and silver at the Rainbow Laboratory in Anchorage. No record was available as to where the 1988 samples were analyzed. Sample intervals were marked with numbered sample tags and orange flagging tape that could be correlated to sample result logs.

The results reported by Cominco for holes drilled in 1984 and 1988 are summarized in Table 2 below.

TABLE 2Cominco 1984 & 1988 Drill Results – Sleitat										
Drill Hole	Local Grid	Bearing	Leng	From/To	Length	Sn %	Ag g/t			
	Coordinates	Dip	th	(m)	(m)	(uncut)	(uncut)			
			(m)							
Cass 84-01	60+00N/47+00E	180º/-60º	45.3	3.4 - 11.9	8.5	0.14	5.6			
Cass 84-02	57+50N/47+00E	180º/-60º	83.0	15.6 - 16.6	1.0	0.36	45.0			
				29.0 - 43.6	14.6	0.16	22.1			
Cass 84-03	53+50N/40+00E	180º/-60º	49.5	0.0 - 6.1	6.1	0.80	25.5			
				16.8 - 19.8	3.0	0.30	3.5			
Cass 84-04	55+00N/42+70E	180º/-60º	42.9	13.8 - 16.1	2.3	0.25	12.1			
				26.9 - 30.3	3.4	0.71	47.1			
Cass 84-05	55+00N/50+00E	000°/-60°	106.7	42.9 - 52.7	9.8	0.17	8.6			
				60.1 - 64.6	4.5	0.19	9.3			
				68.5 - 69.7	1.2	1.50	6.6			
				75.4 - 98.0	22.6	0.27	21.2			
				102.4 - 103.9	1.5	0.22	20.0			
Cass 84 -06	55+50N/52+00E	000°/-60°	62.4	20.4 - 49.5	29.1	1.56	28.2			
				Incl.						
				20.4 - 23.5	3.1	12.55	197.5			
				56.4 - 58.8	2.4	0.24	39.0			
Cass 84-07	57+50N/50+00E	000°/-45°	103.6	3.0 - 32.0	29.0	0.22	9.9			
				39.6 - 45.7	6.1	0.88	66.8			
				59.8 - 66.7	6.9	0.12	28.8			
Cass 88-08	54+70N/52+00E	000°/-60°	109.1	3.05 - 64.31	61.26	0.38	4.9			
				Incl.						
				3.05 - 25.76	22.71	0.67	3.6			
				37.64 - 40.14	2.50	0.30	6.4			
				41.45 - 43.50	2.05	0.39	9.6			
				48.77 - 50.90	2.13	0.12	8.9			
				56.39 - 64.31	7.92	0.50	14.8			
Cass 88-09	44+50N/58+00E	000°/-45°	A	BANDONED (r	ods broker	n off at 14.	9m)			
Cass 88-09a	44+45N/58+00E	000°/-50°	121.3	50.14 - 51.51	1.37	0.33	4.90			
				53.19 - 54.56	1.37	0.23	9.60			
	•	TOTAL:	723.8m			•	•			

Drilling – Brett 2006

During July of 2006 AES completed an additional 702.5 m (2305 ft) of exploration drilling in 5 holes on the Sleitat property to verify and further delineate the mineralization on the property. The

first of these holes, Cass 06-10, twinned Cominco drill hole Cass 88-08 and verified the presence of tin-silver mineralization reasonably comparable to that found in the Cominco drilling (see Section 12, Table 5). The other drill holes further substantiated and expanded the greisen hosted tin-silver mineralization and generally reinforced the findings from the earlier work of Cominco (see Section 12, Tables 4). A summary of the results of the 2006 drilling are shown in Table 3 below.

TABLE 3								
	Bret	t 2006 Sui	mmary]	Drill Results -	- Sleitat			
Drill Hole	UTM Coordinates X_Nad83z4	Bearing Dip	Length (m)	From/To (m)	Length (m)	Sn % (uncut)	Ag ppm (uncut)	
Cass06-10	Y_Nad83z4 606950 6658051	0°/-60°	121.9	3.05 – 107.44 Incl: 3.05 – 64.62 12.19 – 30.48 39.32 – 42.06 51.51 – 62.48	104.39 61.57 18.29 2.29 10.97	0.24 0.37 0.76 0.52 0.38 0.37	6.48 6.18 4.59 19.41 14.99 40.61	
Cass06-11	606950 6658115	180°/-60°	152.4	32.0 – 97.54 Incl: 13.41 – 15.09 53.19 – 56.39 77.72 – 80.92 85.34 – 97.54 108.81 –110.34	1.22 65.53 1.68 3.20 3.20 12.19 1.52	0.37 0.29 0.76 0.56 1.58 0.22 0.18	14.05 5.90 37.83 37.71 31.26 31.79	
Cass06-12	606950 6658117	0°/-60°	152.4	0.0 - 46.33 Incl: 0.0 - 7.32 15.24 - 18.29 22.71 - 46.33 54.86 - 64.62 124.97 - 150.57	46.33 7.32 3.05 23.62 9.75 25.60	0.28 0.44 0.43 0.34 0.06 0.04	7.07 9.92 5.37 8.55 42.95 25.57	
Cass06-13	606950 6658180	0°/-50°	152.4	59.44 - 62.18	2.74	0.15	71.44	
Cass06-14	606834 6658101	0°/-50°	123.4	0.00 - 44.20 91.44 - 99.06	44.20 7.62	0.22 0.02	10.88 26.10	
		TOTAL:						

11.0 Sample Preparation, Analyses and Security

11.1 Sample Preparation

Sample preparation work completed on core samples by Cominco in 1984 and 1988 is not known. Full drill logs and sample results are available in St. George (1985) and Farnstrom (1988), however no information is available regarding the sampling or analytical procedures used. Sample intervals

were marked with numbered sample tags and orange flagging tape that could be correlated to sample result logs.

The 2005 and 2011 field samples were collected from select boulders and placed in individual plastic sample bags, identified by an individual number and corresponding sample tag. The core was re-logged by the author, assay intervals were marked, photographed and the core was sawn into quarters. Samples were placed in individual sample bags, with corresponding sample tags, labeled with the tag number and sealed with survey tape. Every reasonable effort made to include the same continuous portion of the split in the sample. Sample intervals were chosen by the geologists logging the core with interval limits based on geological criteria.

The five holes drilled in 2006 were logged and sampled at a nominal 5-foot (1.52 m) interval based on geologic criteria under the direction of William Ellis. Sample intervals were marked in the core boxes with numbered sample tags and flagging. The core was split using a mechanical core splitter and half of the core from each sample interval was placed in an individual sample bag along with the corresponding numbered sample tag. The bags were sealed with ties and consolidated for transhipment to the AES office in Anchorage. The samples were then trucked to the Alaska Lab facility in Fairbanks, Alaska for sample preparation and Au/Ag analyses. Sample pulp splits were then sent on to ACME Labs in Vancouver, B.C. for a 10 element sodium peroxide fusion analysis which included the Sn analysis.

11.2 Analyses

The 1984 Cominco core samples were reportedly analyzed for tin and silver at the Rainbow Laboratory in Anchorage but there was no record of the analytical procedures. No record was available as to where and how the 1988 Cominco samples were analyzed.

The 2005 samples were analyzed for 47-element suite by induced coupled plasma (ICP) methods with a four acid digestion and Au fire assay with an AA finish (ME-MS-81, AA23 packages). A fusion-XRF finish was applied to those rock and core samples that assayed above 10,000 ppm for tin. Additionally Sn and W in the rock and core samples were analyzed by pressed pellet wavelength dispersive XRF (XRF-05) to determine the most effective analytical method for gaining the most representative analytical technique. Comparison of the results noted a 5% increase in Sn and a 4% decrease in W values with the XRF vs the ICP method.

Alaska Assay Labs/BCI prepared the samples for analysis, performed the Au/Ag analysis using AA with an ICP finish, and then shipped a pulp split of the sample to ACME Lab in Vancouver where the split was analyzed for Sn with a 10 element sodium peroxide fusion procedure. Both Analytical Labs are certified professional labs that meet all of the requirements of international standards ISO.

The 2011 samples were analysed at ALS Chemex Labs for a ICP MS 41 element package and a fire assay for Au/Ag analysis with a ICP finish. There is no relationship between AES and Alaska Assay Labs/BCI, ALS Chemex or ACME Lab. Digital and hard copy results were provided to AES from the Labs, checked for accuracy and drill core results were compared with reported historic results.

11.3 Security

Throughout the 2005 verification sampling program, the 2006 drilling program and the 2011 sampling program, all reasonable standards were met to prevent any purposeful or inadvertent contamination of the samples collected and analyzed. All samples were identified with individual, sequential numerical sample numbers provided from sample tag booklets. Samples were kept in the possession of authorized AES staff at all times prior to shipping.

The 2005 samples were collected and delivered by Lynden Transport truck to Alaska Assay Labs/BCI in Fairbanks. The samples from the 2006 drill program were air freighted from the project area to Dillingham by ACS Fuel then by Northern Air Cargo to AES's office in Anchorage where they were delivered by Lynden Transport truck to Alaska Assay Labs/BCI in Fairbanks.

It is the author's opinion that the sample preparation, the sample security, and the analytical procedures used during past exploration of the Sleitat project and reviewed for use in this technical report were adequate for the puirpose of confirming the mmineralization in the Sleitat Tin-Silver Exploration Target tested to date. Future exploration of the project should incorporate a full industry standard QA/QC program including the regular insertion of standard and blank samples into the sample stream.

12.0 Data Verification

12.1 Data Verification

A blank sample of fresh un-mineralized intrusive was inserted with the rock and core samples taken during the 2005 verification sampling and shipped to ALS Chemex along with the other samples. Duplicate samples of four core and one rock sample from the 2005 verification sampling were sent to an independent lab, Alaska Labs/BSI, for similar element analytical package analyses.

A statistical comparison of the 1984/1988 Cominco samples with the 2005 Brett samples of almost the same sample intervals was made on the quartered core. The variability in Sn and Ag was extreme, most likely reflecting the highly erratic nature of the very coarse grained tin and silverbearing mineralogy. The average Sn variance ratio of Cominco samples vs. Brett was 1.7 but ranged from 0.03 to 9.0. The average Ag variance ratio was 1.5 but ranged from 0.03 to 6.7.

Four core and one rock sample were selected for analysis by a different assay laboratory as a check on the analytical results from ALS Chemex and on the analytical variability of mineralized samples. The samples were submitted to Alaska Labs/BSI for a comparable ICP multi-element package. A high variance was noted on core sample 33211 which had 60 ppm Ag from ALS Chemex and 445 ppm Ag at BSI while the other four samples Ag values varied less than 20%.

The quarter core check samples from the 1984/1988 drill holes were carefully sawn and sampled to be as representative as possible. However, there is a high variability of Sn and Ag values from

the historic Cominco samples and the 2005 Brett samples that is the most likely the result of a "nugget effect" because of the very coarse-grained habit of the mineralization (Table 3).

The 2006 drill core was carefully sampled with blanks inserted at approximately one blank for every 20 samples. A tin standard sample was inserted in each drill hole sample shipment. Samples were packaged and shipped by air freight from the project area to AES's office in Anchorage and then shipped by truck to Alaska Labs facility in Fairbanks, Alaska for sample preparation and Au/Ag 30 g fire assay with Atomic Absorption finish. The pulps were then sent to ACME Labs in Vancouver, B.C. for a 10 element peroxide fusion analytical package suitable for accurate tin analyses.

The author was directly involved in the data verification work described in the section 12.1 and it is the author's opinion that the variable sampling data used in this technical report is adequate for the purpose of confirming mineralization in the Sleitat Exploration Target tested to date.

The very coarse-grained nature and the high variability of the tin and silver mineralization is an issue that needs to be addressed in future drilling programs by larger diameter core samples and analysis of multiple splits of each sample interval. Future drilling and sampling programs should also incorporate a robust QA/QC program including the regular insertion of standard and blank samples into the sample stream.

12.2 AES Independent Sampling

A total of 22 re-split (quartered) core samples were collected in 2005 from 1984 Cominco core under the supervision of the author William Ellis. The same sample intervals were followed, except in hole Cass 84-08, where sample 400149 was split into two samples (33217 and 33218) based on lithological changes. A comparison of results is provided in Table 4:

	Brett 05 SAMP	WIDT	Cominco	WIDT	Cominco	I			Brett	
SAMPLE	LE	H	SAMPLE	Н	Sn	Ag	Avg Sn	Avg Ag	Sn	Ag
SOURCE	NO.	(m)	NO.	(m)	ppm	g/t	ppm	g/t	ppm	g/t
Cass84-6	33201	1.50	97332	1.52	240	2			278	2
Cass84-6	33202	0.68	97333	1.53	225,000	350	221,94 0	284	126,000	344
Cass84-6	33203	0.86							244,000	89
Cass84-6	33204	0.87	97334	1.52	26,000	45	12,450	30	3,340	20
Cass84-6	33210	0.28							22,700	32
Cass84-6	33205	0.52							10,240	11
Cass84-6	33206	1.12	97335	1.53	4,900	30	8,197	26	3,530	18
Cass84-6	33207	0.94							9,300	13
Cass84-6			97336	0.69	8,600	30				
Cass84-6	33208	0.66	97337	1.44	640	3	1,374	6	1,738	6
Cass84-6	33209	0.78							420	3
Cass84-8	33211	1.37	400179	1.46	3,611	412			2,590	60
Cass84-2	33212	0.69	91474	1.03	2,600	120			2,180	127

 Table 4 Brett-05 / Cominco Sample Results Comparisons

Cass84-4	33213	0.71	97215	1.31	2,000	100			18,000	89
Cass88-8	33214	1.53	400143	1.53	37	2			90	3
Cass88-8	33215	0.77	400147	0.76	4,415	26			118	1
Cass88-8	33216	0.76	400148	0.76	8,836	20			6,100	5
Cass88-8	33217	0.47	400149	1.37	4,215	3	2,047	6	190	1
Cass88-8	33218	0.90							2,980	8
Cass88-8	33219	1.68	400150	1.68	2,501	7			8,185	20
Cass88-8	33220	1.68	400151	1.68	3,187	5			5,340	15
Cass88-8	33221	1.67	400152*	1.67	8,606	35			395	1
Cass88-8	33222	1.44	400153*	1.44	765	1			1,320	6
				Cominco/Brett				Average Variance	1.7	1.5

The variability between original and the 2005 resampling Sn and Ag assay results is extreme, most likely reflecting the highly erratic nature of the very coarse-grained tin and silver-bearing mineralogy. The average Sn variance ratio of Cominco samples vs. Brett was 1.7 but ranged from 0.03 to 9.0. The average Ag variance ratio was 1.5 but ranged from 0.03 to 6.7. The highest grade zone of tin mineralization varied from 12.6% to 24.4%, however the average value of the narrower Brett samples averaged 22.2% vs. Cominco's wider interval of 22.5% which is statistically the same. Although the variability is high, if tin mineralization is present in the thousand of ppms it was also typically reported in the thousands of ppms in the check samples. In addition to being enriched in tin and silver, the 2005 sampling revealed anomalous levels of gold, tungsten, copper, lead, and uranium.

Two selective grab samples were collected when visiting the property. The samples were from frost heaved greisen altered and cassiterite mineralized boulders near to the collar of drill hole Cass 84-05 within the north greisen zone. The results showed anomalous silver (8-20 ppm), tin (18-4900 ppm), and tungsten (388-2050 ppm) values.

The 2005 verification sampling work by AES included the collection of 7 stream sediment samples from creeks draining the Sleitat area. Sample sites were chosen that were within the active, middle sections of the drainage, just below the break in grade to the upper sections. Sediment material was variable, tending to be coarse sand to gravel. Glacial till material commonly formed the banks of the stream areas and was avoided during sampling, but could still form a significant proportion of the samples. Sediment samples were collected in kraft paper sample bags.

Enom(m)		$\mathbf{T}_{\mathbf{a}}(\mathbf{m})$		L an ath (ma)		S = 0/				
From(m)		10(m)		Lengtn(m)		Sii %		Ag ppm		
Cass	Cominco	Cass	Cominco	Cass	Cominco	Cass	Cominco	Cass	Cominco	
06-10	88-8	06-10	88-8	06-10	88-8	06-10	88-8	06-10	88-8*	
3.05	3.05	64.62	64.31	61.57	61.26	0.37	0.38	6.18	5.40	
12.19	3.05	30.48	25.76	18.29	22.71	0.76	0.67	4.59	3.97	
39.32	41.45	42.06	43.59	2.29	2.13	0.52	0.39	19.41	10.58	
51.51	56.39	62.48	64.01	10.97	7.92	0.38	0.50	14.99	16.31	

Table 5 – Comparison of Brett DH Cass 06-10 a twin of Cominco DH Cass 88-8 Results

* Cominco 88-8 Ag values converted from g/t: Conversion Factor Used: 1g/t =1.102 ppm

The 2005 stream sediment samples were collected from locations approximating some of those that were identified by Burleigh (1990) as highly anomalous in tin in panned concentrates. Burleigh's pan samples and Brett's 2005 stream sediment samples showed strong to highly anomalous results peripheral to the mapped stock. Samples to the northwest and southwest suggest the mineralization extends beyond the mapped stock. The anomalous sediment sample results varied from 24 to 323 ppm Sn and 10 to 201 ppm W in fine fraction (-180 mesh) samples and 14 to 57 ppm Sn and 17 to 63 ppm W in coarse fraction (+180) samples. The anomalous variability in the course and fine fractions noted indicates the importance of analysing both sediment fractions for effective detection of tin and tungsten anomalies.

In 2011 AES collected 14 pan concentrate samples around Sleitat Mountain which confirmed the highly anomalous tin (16-147ppm) and tungsten (20-1770 ppm) values reported by the USBM study to the northwest, southwest, and southeast (Thurow, 2011).

13.0 Mineral Processing and Metallurgical Testing

Metallurgical Test: Cominco 1984

Approximately 27.2 kilograms of greisen material was sent to Aberfoyle Services Pty. Ltd in Australia for preliminary metallurgical testing (Aberfoyle, 1984; quoted in St. George, 1984). The sample was reportedly composed of randomly collected grab samples from greisen surface rubble material throughout the area. The sample assayed 0.65% tin and 19 ppm silver and had a measured specific gravity of 2.75 gm/cm³. The results were summarized as follows:

- Recovery of tin: 83% (+5%/-10%);
- A high grade, >60% tin concentrate is expected (silver recoveries not measured);
- The mineralized material is highly amenable to gravity processes, with excellent potential for Heavy Media Separation also.

It is uncertain how reliable or representative the random sampling of greisen material was. Additionally there was no mention of any processing factors or deleterious elements such as arsenic which is noted in the mineralized greisens at Sleitat.

14.0 Mineral Resource Estimates

There are no current resource estimates for the Sleitat Exploration Target; however, a noncompliant "historic resource" was estimated by the USBM (Burliegh, 1991) and discussed in the 6.0 History section of this report.

- **15.0** Mineral Reserve Estimate (Not Applicable)
- **16.0** Mining Methods (*Not Applicable*)
- **17.0** Recovery Methods (*Not Applicable*)
- 18.0 Project Infrastructure (Not Applicable)
- **19.0** Market Studies and Contracts (*Not Applicable*)
- **20.0** Environmental Studies, Permitting and Social or Community Impact *(Not Applicable)*
- 21.0 Capital and Operating Costs (Not Applicable)
- 22.0 Economic Analysis (Not Applicable)

23.0 Adjacent Properties

The Sleitat tin-silver exploration target is an isolated occurrence in the region and there are no additional claims or prospects in the immediate vicinity. Tin placer deposits are considered likely in the Quaternary paleochannels surrounding Sleitat (Burleigh, 1990). There are a few tin-silver occurrences reported in the Koksetna Hills 85 miles to the northeast.

24.0 Other Relevant Data and Information

The Sleitat prospect is situated in a remote part of Alaska on state land. The only industrial activity to have occurred in the area was the reconnaissance drilling by Cominco of a total of 9 core holes on the site in 1984 and 1988 and the drilling of 5 additional core holes by AES in 2006 in the same general area as the prior Cominco drilling. Except for minor disturbances (survey grid pickets, exposed drill anchor stems, small hand excavated trenches), the site remains undeveloped. All drill core was removed from the site. Based on visual inspection there are presently no environmental issues in the Sleitat area, either resulting from human activity or from natural sources, nor are there currently any unusual social or political encumbrances to exploration, development or production on the Sleitat property.

Exploration activities including drilling and trenching on state lands are routinely permitted with an Alaska Placer Mining Application (APMA) and temporary water use permits.

25.0 Interpretation and Conclusions

Sleitat Mountain is a topographic high preserved largely due to the presence of the small, early Tertiary Sleitat granite stock and surrounding, weathering resistant hornfels aureole developed in Early to Late Cretaceous Kuskokwim Group flysch deposits (Figure 4). The Sleitat granite is a multiphase stock comprised of biotite granite, biotite-muscovite granite, and zinnwaldite granite. Greisen alteration extends east-west through all the granite phases and into the surrounding hornfels.

The Sleitat occurrence is best classified as an eroded, sheeted tin greisen. However, the presence of mineralization hosted in hornfels rock along the south margin could be indicative of an unroofed greisen zone or even a deeper cupola intrusive phase with associated roof greisen mineralization (Hudson & Reed, 1997). Additionally, elevated radiometric signatures along the south boundary are interpreted as being indicative of possible unroofed greisen zones (Burleigh, 1990).

Tin-silver mineralization was first identified at Sleitat Mountain in 1983 by regional prospecting crews working for the Cominco–Enstar Kuskokwim Project, a regional geochemical project designed to identify tin-silver and gold-silver prospects. Exploration continued through 1988 and included completion of 9 core holes. All of the drill holes intersected variable tin and silver mineralization that ranged from narrow very high-grade zones (3.1m 12.55% Sn, 197.5 g/t Ag), to somewhat wider intermediate grade zones (29.1m 1.56% Sn, 197.5 g/t Ag) and low grade zones (61.3m 0.38% Sn, 4.9 g/t Ag).

In 1989 the USBM evaluated the tin resource potential of Sleitat and inferred a resource of 28.6 million short tons (25.9 tonnes) of mineralized rock at a grade of 0.224 to 0.37% Sn, 0.04% W, and 17 g/t Ag based on representative surface samples and a depth projection based on Cominco drill holes(Burleigh, 1991). Burleigh's calculated "inferred resource" can only be considered conceptual as it does not meet the minimum requirement for classification as a C.I.M. standard mineral reserve. The author believes that this historic estimate is relevant to the further evaluation, planning and exploration of the subject property, however this historic estimate is not current and is not compliant with CIM standard definitions. A qualified person has not done sufficient work to classify this historical estimate as current mineral resources and Strongbow is not treating the historical estimate as current mineral resources. Neither the author nor Strongbow have verified the calculations and they are not reconcilable with current resource categories as specified by CIM standard definitions. A qualified person has not evaluated this historic estimate on behalf of Strongbow and comment cannot be made with respect to what work needs to be done to upgrade or verify the historical estimate as current mineral resources. This historical estimate is reported here for information purposes only and should not be relied upon.

Preliminary metallurgical testing (Aberfoyle, 1984; quoted in St. George, 1984) of randomly collected grab samples from greisen surface rubble material produced a high-grade >60% Sn concentrate with 83% recovery using conventional gravity methods.

The north greisen, the focus of all the Cominco drilling, USBM work, and Brett's drilling, appears to be open to the east, west and at depth. The north greisen is coincident with an 800m (2600 foot) long by 90 to 260m (300 to 850 foot) wide multi-element geochemical anomaly. The south greisen remains essentially untested; though a 365m by 120m (1200 foot by 400 foot) multi-element geochemical anomaly is present along with scattered tin mineralization.

The very coarse-grained nature and the high variability of the tin and silver mineralization is an issue that will need to be addressed in future drilling programs by larger diameter core samples and analysis of multiple splits of each sample interval. This variability noted in the sample results could adversely affect the reliability tin and silver grade estimates of the Sleitat exploration target.

There appears to be up-side potential to extend the tin-silver mineralization at the north greisen zone and define additional tin-silver mineralization in the untested south greisen zone at the Sleitat prospect. Scattered cassiterite bearing quartz veins have been noted in the hornfels peripheral to the Sleitat stock along with narrow rhyolite porphyry dikes. That coupled with very anomalous tin and tungsten pan and sediment samples to the northwest, southwest, and southeast in hornfelsed sediments suggest areas that are prospective for buried tin bearing intrusions. A large airborne magnetic anomaly occurs on and to the southeast of the claims suggesting the presence a shallowly buried intrusion.

Although continued exploration appears to be warranted at the Sleitat exploration target finding sufficient mineralization of a high enough grade for development in the very remote location is not assured.

26.0 Recommendations

The Sleitat property covers 1425 hectares (3520 acres) underlain by granitic intrusives and hornfelsed sediments that are prospective for tin-silver greisen deposits.

Stream sampling in 2005 identified anomalous samples to the northwest, southeast, and southwest of the known mineralization at the Sleitat Prospect that warrant follow-up prospecting. There is a string of magnetic anomalies to the northeast along the southeast margin of the Mulchatna graben that warrant field examination.

In the 1980's Cominco identified two significant greisen targets at Sleitat and in 2006 Brett drilled five additional holes in one of these targets to supplement drilling done by Cominco in 1984 & 1988 on the same target. The 2006 drilling confirmed and expanded the known mineralization in the area; however both targets still require additional exploration drilling to further define the extent and tenor of the mineralization.

Considering the coarseness of magnetic data of the 2004 USGS airborne geophysical survey a high resolution heliborne magnetic and radiometric survey with a line spacing of 100 meters and a nominal flight height of 30 meters is recommended. This type of survey could detail greisen altered areas and help define new targets in the areas peripheral to the Sleitat stock. This survey is recommended as a Phase I exploration program intended to provide a more detailed geophysical database which could, if warranted, be used, along with the past exploration and drilling results from the property to plan for a Phase II exploration drilling program. Ideally, Phase II drilling could be warranted if the survey helps identify expanded or new near surface targets, that have not been recognized to date.

Phase II drilling would be contingent on the success of the detailed airborne magnetic and radiometric definition of the greisens zones and definition of new peripheral targets. If further drilling is warranted the use of larger diameter core samples (NQ, TWQ or HQ) is recommended, and that analytical protocols include analysis of multiple splits of key core intervals in order to

address issues of 'nugget effect' caused by the coarse-grained variability of the tin and silver mineralization.

Proposed Budget

Phase I - Airborne Magnetic & Radiometric Survey \$50,000

Phase II - If drilling is warranted then a 30 day helicopter supported field exploration program including a six hole 1000m (3280 ft) core drilling is estimated to cost as follows in \$US:

Personnel	
Project manager (40 days)	40,000
Geologist and Sampler (\$600 + \$400) 30 days	30,000
Helicopter 3hrs day/30 days \$775 hr	69,750
Drilling 1000 m (3280') \$35/foot	114,800
Fuel Helicopter & Drill 5000 gal@ \$5.00 gal	25,000
Room & Board (8man 30 days \$150 day)	36,000
Mob/demob crew & field gear & rental	<u>15,000</u>
Subtotal	330,550
~12% contingency	<u>39,450</u>
Total Estimate	\$370,000
27.0 References

- Burleigh, R.E.; 1991. Evaluation of the Tin-Tungsten Greisen Mineralization and Associated Granite at Sleitat Mountain, Southwestern Alaska. Open File Report 35-91; US Dept. of the Interior, US Bureau of Mines, Fairbanks.
- Burleigh, R.E.; 1991. Geology and Geochemistry of the Sleitat Mountain Tin Deposit, Southwestern Alaska in Short Notes on Alaskan Geology 1991; Reger, R.D. ed.; Professional Report 111, US Dept. of Natural Resources, Div. of Geological and Geophysical Surveys, Fairbanks; pp. 29-39.
- Ellis, William T., 2006, Technical Report on the Sleitat Mountain Tin-Silver Deposit, Southwest Alaska. NI 43-101 Report prepared for Brett Resources, Inc.
- Ellis, William T., 2007, Technical Report on the Sleitat Mountain Tin-Silver Deposit, Southwest Alaska 2006 NI 43-101 Report prepared for Brett Resources, Inc.
- Farnstrom, H.E.; 1989. Kuskokwim Joint Venture, Mose and Sleitat Prospects, 1988 Progress Report. Cominco American Inc.; unpub. Internal Rpt.
- Freeman, C.J. 2004; Summary Report for the Shotgun Gold Prospect, Kuskokwim Mineral Belt, Alaska; Geologic Report SH04EXE-1. Technical Report prepared for NovaGold Resources Inc. and TNR Gold Corporation; by Avalon Development Corp, Fairbanks.
- Hudson, T.L. and Reed, B.L. 1997. *Tin Deposits of Alaska*; in *Mineral Deposits of Alaska*; Goldfarb, R.J. and Miller, L.D., ed.; Society of Economic Geology Monograph 9, Stanford, 1997; pp. 450-465.
- Hudson, T.L., 2001a. Alaska Resource Data File, Dillingham Quadrangle, Alaska, Open File Report 01-192, US Dept of the Interior, US Geological Survey, Anchorage.
- Hudson, T.L., 2001b. Alaska Resource Data File, Taylor Mountains Quadrangle, Alaska, Open File Report 01-200, US Dept of the Interior, US Geological Survey, Anchorage.
- Goldfarb, R.J.; 1997. *Metallogenic Evolution of Alaska*; in: *Mineral Deposits of Alaska*. Goldfarb,
 R.J. & Miller, L.D., ed.; Society of Economic Geology Monograph 9, Stanford, 1997; pp. 4-34.
- Mulligan, R. 1975. *Geology of Canadian Tin Deposits*. Economic Geology Report No. 28, Geological Survey of Canada, Dept. of Energy, Mines and Resources, Ottawa.
- Nokleberg, W.J. et al, 2003. *Metallogenesis and Tectonics of the Russia Far East, Alaska and the Canadian Cordillera*; Open File Report 03-434, US Dept. of the Interior, US Geological Survey; p. 406.

- Piekenbrock, J.R., St. George, P., Cassaboom, C.C., Farnstrom, H.E., Owens, P.A. and Nagy, L.J.; 1984. Kuskokwim Project, 1983 Progress Report and 1984 Budget Summary. Cominco American Inc.; unpub. internal rpt.
- St. George, P., Cassaboom, C.C., Farnstrom, H.E. and McCardell, L.W.; 1985. *Kuskokwim Project, 1984 Progress Report and 1985 Budget Summary, Volume I.* Cominco American Inc.; unpub. internal rpt.
- Thurow G., 2011. 2011 Results of Fieldwork on Alaska-Tin Properties summary compiled on behalf of Osisko unpublished internal report.
- van Hees, W.W.S. 1999. Vegetation Resources Inventory of Southwest Alaska: Development and Application of an Innovative, Extensive Sampling Design. Res. Pap. PNW-RP-507. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

Appendix I Table of Drill Core Assays

Cominco Drill Core Assays

ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALE USA. RE. 90 CHEMES ANUM, UM3 Sparts NY 06631-6770 Phone 775 335 6035 Fize 775 335 0179 WWK.48509mmeK.com

Sis

To: ALASKA EARTH SCIENCES 11401 OLIVE LANE ANCHORAGE AK 99515

Page: 1 Finalized Date: 8-NOV-2005 This copy reported on 9-NOV-2008 Account: NET

CERTIFICATE FA05089219 H DIS		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: P.O. No.:	WEI-21 SCR-41	Received Sample Weight Screen to -180um and save both	
This report is for 7 Stream Sodiment samples schmitted to our lab in Soldhanke AK 11SA			
The report is the " Superior Continuine destriptions addressing of the and the and the providence of the contra		ANALYTICAL PROCEDURES	
The following have access to data associated with this certificate:	ALS CODE	DESCRIPTION	INSTRUMENT
BILL ELLIS DAVE TUPPER	ME-MS81	38 element fusion ICP-MS	ICP-MS
	AU-AA23	Loss on Ignition at 1000C Au 30g FA-AA finish	WST-SEQ AAS

To: ALASKA EARTH SCIENCES ATTN: BILL ELLIS 11401 OLIVE LANE ANCHORAGE AK 99515

This is the Final Report and supersades any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Nex	CHEMISTRY	
LS Chen	A he.	Hendale Avenue, Unit 3 to NV 89231-5730
4	AS US	Sparts Sparts

To: ALASKA EARTH SCIENCES 11401 OLIVE LANE ANCHORAGE AK 99515

Page: 2 - A Total # Page: 2 (A - C) Finalized Dste: 8-NOV-2005 Account: KET

		ME-MS61 H		97 क 77 क	
	9219	ME-MSH1 Ppm Do	857.45 274 274	2.2	
	FA0508	ME-MS81 Ge Rpm	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4	
	YSIS	MG-MCR	23232	र्ष भा म	
	F ANAL	ME-MSA1 Er Dom	8758788 8758788	ब ले ले	
	ATE O	ME-MUSEI Py Py Me	42 52 3.6 4.5 4.4	40 40 च ल	
	ERTIFIC	MEMORY OF CO	4.1 14.0 8.0 14.6	P82	
	Ö	Mic-Math	\$\$ \$\$ \$\$ \$\$ \$\$	100	sample.
		ME-MS81 CC DCS	11.5 9.1 8.8 10.4 13.6	15.2	OD-SUMCHBR
		NE-MS81 Ca Ppm 0.5	81.5 73.6 67.5 88.4 41.8	96.7 87.0 1	
chemex.con		ME-MSB1 Cu spm	t 2 2 7 8	8 6	Y INC-WOOL
8 www.ala		ME-MSB1 Ba ppm 0.5	757 6226 7192 7192 5615 5615	214 245	10, 8150 11 0
: 776 355 017		ME-MSH1		रू ए	
431-5730 6 5395 Fee		Aurwez Ma Urk 200,0	0.011 0.014 0.021 0.012 NGS	0.900 SSN	Dimension L
Sparks NV 89 Phone: 775 3		WEH21 Roand WL. Ag 0.62	0.41 0.43 0.46 0.46	0.35 0.40	inversion inte
$\mathbf{\hat{\mathbf{C}}}$		1115			
ALS		bescription			
Ĭ		Sample 2	7901 7903 7904 7905	7905 7807 COmmandes	

	-	· · · · · · · · · · · · · · · · · · ·			
*8ge: 2 - B : 2 (A - C) NOV-2005 ount: KET		ME-M00)	80000	ଷ୍	
f I # Pages d Date: 8- Acc	89219	VE-MSBIT	80 81 0 1 2 0 1 2 0 1	4 6 4 6	
Tota Finalize	FA050	ME-MBB1 Se Picm	225 182.0 227 202	190.5 191.5 191.5	
	LYSIS	AGE-MODEL	n 8 + 8	R 8 0	
	DF ANA		7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	2	
60 11	CATE C	ME-MSB1 Rb ppm	38.0 86.1 84.1	1-4-1 1-1 1-1-1 1-	
H SCIENC ANE AK 99515	ERTIFI	ME-MSH1 PPm 0.1	10.7 8.5 7.5 11.2	8.7	
Ka Eart 1 Olive L 1 Orage /		NE-MORE	522 5	5 2 2 2	
To: ALAS 1140 ANCI		NEWSCI NEWSCI	***	5 X Z	
e		ME-M861 Nd Pom 0.5	405 27.8 40.8 27.8	42.7	
STRY strey		ME-M361 Nb + ppm	\$\$\$\$\$: \$ \$	
		ME-W301 Mo Pp: m	80800	N N	
		ME-MS01 Lo Dym D.1	0.5 0.4 0.4	2 0 9 8	
NOE IN A DIAL		ME-WSB1 La ppm 0.5	43.6 36.2 34.2 44.7 19.4	-48.7 25.9	
ALL EXCELLE ALS USA IN: ALS USA IN: Sports NVB Sports NVB		ME-MS81 Ho ppm 0.1	807 800 1 0 7 800 1	0.8 0.8	
		Analyse Contro Loss			
		mpie Description	001 003 004 005	80	
		4	****	R R	

Comments: ** CORRECTED COPY for previously omitted Ag, Cu, Mo, Pb, and TI by ME-MS81 ** NSS is non-writicient sample.

Page: 2 · C Total # Page: 2 (A · C) Finalized Date: 8-NOV-2005 Account: KET	FA05089219				
INCES 15	IFICATE OF ANALYSIS	st ME.Maser 2r pom 0.5	3171 317 306 308 309 300 300	204	
ASKA EARTH SCIE 01 OLIVE LANE CHORAGE AK 9951 CHORAGE AK 9951	CERTI	HE-MSS1 AE-MS2 Yb Zn ppm ppm 0.1 S	27 25 25 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	3.0 2.4 122	
To: ALI, 114 AN		ME-M981 N/E-M981 W Y Ppm Ppm 1 0.5	201 24.7 201 31.5 10 22.8 27 22.7 27 22.7 27 22.8 27 22.8 27 22.7 27 27 27 27 27 27 27 27 27 27 27 27 27 2	88 va	
HEX I. CHEMISTRY * www.abchemex.co		ME-XIS81 ME-AIS81 U V ppm ppm 0.5 5	2.8 129 3.9 128 3.6 128 3.1 128 6.1 123 6.1 123	3,4 144 2,7 2,15	
		ABS1 MEANS61 1 Tm m ppm 5 0.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	रो से 2. क	
ALS EXCELLENCE ALS USA IN: Sparle Aven Sparle NV 89431-5 Phone: 775 368 53		ME-MEA Th: 1 ppm py 1 0	******	α ►	
		Redned Analyse Units Sample Beechption Lon	7901 7002 7003 7004 7005	7905	the second se

Comments: ** CORRECTED COPY for previously omitted Ag, Cu, Mo, Pb, and Th by ME-MSS1 ** NSS is non-sufficient sample.

ALS CHEMEX EXCELENCE IN ANALYTICAL CHEMISTRY NJ UGAIGE ANNUEL CHEMISTRY SIG GROUDE ANNUEL UILLS

ALS

E

To: ALASKA EARTH SCIENCES 11401 OLIVE LANE ANCHORAGE AK 95616

Finalized Date: 21-NOV-2005 Account: KET

	www.afschemex.con
	Fax: 776 355 0179
Sparks NV 89431-5730	Phone: 775 356 6395

1	and the second s	CONTRACTOR OF THE OWNER.			diam'r.	because of the local division of the local d	_	_	_
							INSTRUMENT	ICP-MS	AAS
SAMPLE PREPARATION	DESCRIPTION	Received Sample Weight Pulverize split to 85% <75 um	Spik somple - rithe spikter	Fine crushing - 70% <2mm	Sample Iogin - Kod W/O BRAGOR	ANALYTICAL PROCEDURES	DESCRIPTION	38 element fusion ICP-MS	AU 30g FA-AA firish
	ALS CODE	WEI-21 PUL-31	SPL-21	CRU-31	106-22		ALS CODE	ME-MS81	AU-AA23
CERTIFICATE FA05096514 CD/1 HG FACHAP		Project: Silelat/Brett	P.O. No.: The second second second second second for an lab in Estimates AK 11SA	I mis report is for a bream acquirtant sentilles secondiques de la	The following have access to data associated with this certificate:	BILL ELLIS DAVE TUPPER			

To: ALASKA EARTH SCIENCES ATTN: BitL ELLIS 11401 OLIVE LANE ANCHORAGE AK 99915

This is the Final Report and supervides any preliminary report with this cartificate number. Rescults apply to samples as substitted. All pages of this report have been checked and approved for release.

Signature:

		_			· · · · · · · · · · · · · · · · · · ·
age: 2 - A 2 (A - C) NOV-2005 NUM: KET			NECANSON His ppm 0.1	80 80 80 80 80 80 80	ୟ ୩ ୦ ୦
Pages Date: 21-		96514	ME-KSB+ H/ Ppr	un ve un un un	40 KA
Tota Finalitzed		FA050	ME-MSR1 Gud Spm	22223	ध्य । स
		LYSIS	MEARSB1 Car Epril	8 5 5 8 8 9 7 8	00 00
		PE ANA	NE-MEBOT 624 Byrn	2000 E E E	त्र त सं म
8		CATEC	ME-MOBS Er ppm	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5
H SCIENC VNE LK 99515	rett	ERTIFI	ME WORL	34663	क्षे क स स
KA EARTI OLIVE U ORAGE A	t: Slietat/B	0	ME-WSBS Cu ppm s	****	ន ព
To: ALAS 11401 ANCH	Project		ME-MSS1 C4 ppm 0.1	10.2 48.4 13.9 46.2 46.2	2. 45 49. 49. 49. 49.
	E.		1957 C	150 150 130 130	130
V	schemex.co		MEANSIGS Co ppm p.5	14,2 11,5 11,6 14,8 10,0	物 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	19. WYYW. 87		MC-MSM Co ppm 6.5	609 504 504 505	70.2 52.8
hei	x: 775 355 01		ME-MS91 Ric ppro	1315 781 1240 986 979	1036
	M31-5730 56 5395 Fa		ME-AB4t Ag Form	220++	5 T
AL	Sparks NV 48 Phone: 775 3		WENZI Recud VM Kg 0.32	0.39 0.39 0.45 0.45	0.46
	6		Motheed Analyte Unite Lon		
	A L S		esoription		
	\sim		Sample D	7921 7902 7908 7904	5064 5064

ege: 2 - 8 2 (A - C) VOV-2005 Nunt: KET			NS: 19861				8
P I# Pages: Date: 21-1		96514	1954-324	0.7 0.8	7.0 8.0	6.7	5 d
Finalized		FA050	ARE-MISHE Ta	0.1 8.1	01	60	o t
		L YSIS	ME-MSBS 20- 20- 20-	64.7 42.8	56.7 47.5	66.8	6-13 19
		F ANA	Services Services	7 57	7 N S	21	2
12		CATE O	840-46881 Sm 2.1	5.4 8 9	1993	5.3	2
I SCIENCE NE K 99515	tet	ERTIFIC	ME-ASSIE PP-M D-2	121.0	111.5	126.5	1100
(A EARTH OLIVE LA ORAGE A	t: SlietaVB	C	ME-MSR3 77 Ppm C-4	8.4	4.5	6.9 8.2	n, e
To: ALASI 11401 ANCH	Projec		ACT ACT	21	989	ç 0	2
	E		ing ing	8	188	4 5	<u>इ.</u> स्
	schemex.co		58538-244 9N 144	122	19 F	26.1	50°C
	đe.www. 61		AR-AdSite	- 25	0 6 6	16	<u>e</u> \$
	3 c 775 355 011		Me-MS81 Me Me	5 N	n 9 n	7 ·	a Çi
	Avenue, Unit 131-5730 16 5385 Fax		MEL-MS-27 Lu GDM	0,4	0.4 0.4	0.4	रू स २ छ
ALS	994 Giendale . Specks NV 88 Phone: 775 35		MB-MATCHA Las Perte	97/5 34/5	25.5 32.5 29.5	22.4	5 % 2 5
			and and a second			1	
	In		24"	5			
	L A			azergeu			
		,		n andwe	7902 7913 7904	90B/	5062
				n ''		_	

	(ALS)	Mu Am Bistription L	7901 7902 7904 7804	7902
ાળ્યા ધાર સં	UT OL	1		
ALS DYCELLER	parka AIV 89 hone: 775 36	1/18-1/18-1/1 11 0.5	0.0 0.0 0.5 0.5 0.7 0 0.7	40.5 40.5 40.5
	431-5730 56 6335 Fa	ME-2531 En ppm 0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
hei	00 776 355 01	ME.NS61 U Ppm	2.8 2.6 3.1 3.1	5 5 6 N C
	179 WWW.RI	ARSB1 V ppm 5	286 160 258 232 232 230	240
V	schemex.co	HE-64561 W range	名战星春路	\$ + 4
	E	NE-M301 Y 655 6.5	25.5 27.8 23.7 23.7 25.7 25.7	22.9 2.5 2.
To: ALASI 11401 ANCH	Projec	ME-MSB5 Yb 3.1	2.9 2.9 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	2.5 2.5
(A EARTH OLIVE LA ORAGE AI	t: Slietat/Br	NS:478.61 Zn s	161 161 184 184	198
I SCIENCE NE K 99515	ERTIFIC	510 12 12 13 12	164.5 137.0 184.5 171.5 142.5	172.5 177.0
**	ATE OF ANALYS	Au-AA23 M Pgm 0.805	0.005 0.005 -0.005 -0.005	9000 2000 to
Total # Page Finalized Date: 21 Acr	IS FA05096514			

ALS CHERCE IN ANALYTICAL CHEMISTRY AS USA htt. BS USA htt. BS USA 15730 BS IN PANJ-5730 Phone: 775 355 5395 Fue: 775 356 0179 WWK.aBchemek.com

ALS

To: ALASKA EARTH SCIENCES 11401 OLIVE LANE ANCHORAGE AK 99515

E

Page: 1 Finalized Date: 23-NOV-2005 Account: KET

CERTIFICATE FA05089890			SAMPLE PREPARATION	
		ALS CODE	DESCRIPTION	
Project: P.O. No.: This report is far 22 Drill Core samples submitted to our lab in Fair 24-DCT-2005. The following have access to data associated with this certifi	banks, AK, USA on cate:	Wei-21 Log-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample logh- Rod w/o BarCode Fine crushing - 70% <zinnn Spill sample - riffe spillter Putveriza spill to 85% <75 um</zinnn 	
BUL ELLS DAVE TUPPER			ANALYTICAL PROCEDURES	
		ALS CODE	DESCRIPTION	NSTRUMENT
		ME-XRF10	Fusion XRF - Ore Grade	XSF
		OA-GRA08	LOI for ME-XFIF06	WST-SIM
		ME-MS81	38 element fusion (CP-MS	ICP-MS
		OA-GRA05	Loss on tgnition at 1000C	WST-SEQ
		ME-XRF05	Trace Level XRF Analysis	XRF
		AU-AA23	Au 30g FA-AA linish	AAS

To: ALASKA EARTH SCIENCES ATTN: BILL ELLIS 11401 OLIVE LANE ANCHORAGE AK 99515

This is the Final Report and supersades any preliminary report with this cardificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 23-MOV-2005 Account: KET

To: ALASKA EARTH SCIENCES 11401 OLIVE LANE ANCHORAGE AK 99515

ALS Chemex Excellence IN ANALYTICAL CHEMISTRY ALS (EA) Har BIG CHEMISTRY ALS (19) ANALYTICAL CHEMISTRY ALS (19) ANALYTICAL CHEMISTRY BIG STORE ANALARY Phone: 775 505 5305 Far: 776 536 0179 WWA.486chemex.com VIS V

CERTIFICATE OF ANALYSIS FA05089890

-	5		_		T	-			-	-		_			-	-	_		-	-					-		 -	 	 		 	
	AND LIGHT	THE WOOL	-	-		\$ •	- 1		na ien	•	n e		. 67	W . ¹	•	-	N	10	-17	•	i e		9 0	4 e%	60	e2						
2020	Ve Liebi	Cod and	and a	10	22	9 ¢	2.0		1		o c	n cu F ut	6.3	2,8	3.6	1.5	3.5	5,0	\$73	30		1.10		4	5.2	6.1						
	1001100		Descri	-	Þ	5 7	5	4 \$	2 7	14			37	a	8	13	13	8	3	28	-24	28	2	32	37	99						
200	ACT-MORY	a	- Contraction	0.1	- e>	140	t P	112	19	545	1 10	9	40.1	20.1	<0.1	\$0.1	0.1	<0.1	\$0.1	40.1	40.1	50.1	50	<u>6</u>	4	0,1						
	MEMISER	1	000	0.1	5.5	i e	0.0	17	18	14	12	6	2.0	1.0	1.3	0.5	2.0	1.8	2.0	1.0	22	17	1.6	1.7	2.1	5.1						
	ME-MS81	6	the	0.1	5.0	2.6	7.6	20	4.9	56		6.9	6.3	3.2	4.0	2.7	4.2	5.7	6.2	4.7	6.5	5,3	<u>6</u> ,1	5.1	6.0	e						
	MEAREN	õ	wdd	ath	52	1440	1580	142	100	124	276	268	8	195	5320	3350	1075	22	20	74	49	8	241	120	4	871						
	ME-M381	8	pp:set	a .1	48.3	58.3	4.4	4	2.8	3.3	9.6	61.6	75.0	2.9	15.0	0.7	21.5	36.1	45.5	32.3	31.5	22.7	3.3	10.1	21.1	1.66						
	ME-MS01	5	udd	10	₽	8	01	02	50	20	20	8	21	8	8	ରୁ	8	8	9	9	1 0	20	2	20	9	3						
	14844341	ð	bpm	6.5	0.5	0.6	0.7	0.5	0.5	0.5	\$	0.6	19 19	0.0	8.5	40,5	0.5	92	0.7	40.5 2,05	5	0.6	<0.5	0.6	0.8	<i>e</i> -2						
	ME-N961	8	undd	53	23,5	11.3	82	17.8	16.9	20.2	18.1	17,4	23.3	9701	14.8	0.0	19.2	0122	23.7	17.7	24.3	18.0	18.5	19.0	22.8	212						
	ME-MS81	8	the second	0.5	72.4	1020	275	31.7	27.5	170.5	26.7	133.0	57.55	142V	26.8	9.2	2.1	ALC	430	260	201	179.5	53.1	64.7	308							
	ME-MSB1	ę	uudid	-	44	344	68	8	11	18	13	-	19 Ş	76	8	121	A0 (21	-	10	-	60	29	15	4 7 6	5						
	AU-M23	R	udd	6,005	<0.005	0.354	0.259	0.008	01005	<0.005	0,005	\$0.082	0.00.0	200	0.00	00000	0.10	200.01	200.02	<0.005	<0.05	9000	0.006	<0.005	<0.005							
	WEN-21	Recrd WI.	B	0.02	1.29	0.55	0.74	0.62	0.74	0.93	0.85	0.53	100		5.0				7¢n	0.76	0.42	0.77	1.51	1.44	1.24							
	Method	en la compañía		5				**						t						-				1				 	 _	-		
	-	-	s Deterlation																													
			Sample		33201	23202	33203	33204	33205	33206	33207	30255	33210	10-0-0-0	11300	1224	21014	12016		91212	11200	33216	ALZES	33220	12202							

Pages: 2 - B Total # Pages: 2 (A - C) Finalized Date: 23-NOV-2005 Account: KET

To: ALASKA EARTH SCIENCES 11401 OLIVE LANE ANCHORAGE AK 99515

ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY AJ3 UA.Nu. 90 GINEA ANNA, UR13 92 GINEA ANNA, UR13 93 Fax 775 355 0179 WWW.Alschemek.com Prone: 773 355 5335 Fax 775 355 0179 WWW.Alschemek.com

ALS

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 23-NOV-2005 Account: KET

To: ALASKA EARTH SCIENCES 19401 OLIVE LANE ANCHORAGE AK 99515

EXCELLENCE IN AMALYTICAL CHEMISTRY Als Und. M. Als Undia Avenue, Unid 3 Bordes NV 80471-573 Phone: 776 356 5395 Fax: 775 355 0179 WWW.Alschemex.com ALS Chemex

ALS

ME-X0710 5h % 0.01 CERTIFICATE OF ANALYSIS FA05089890 12,60 1,08 8670 2.27 8 ME-X07P05 W #0m 10 228889 ME-XR905 Ta ppm 2 MEJORFOS Sn ppm 5 294 2943000 2943000 2943000 293000 20000 225700 222700 222000 2220000 222000 222000 222000 ME-MS&1 Zr Ppm 0.5 ME-MS31 Zn ppm ME-N/84 ME-MS91 × ų-MIC-W381 > Ling ME-Wast 0 95 0 95 0 95 10.3 11.12 12.13 12.1 ME-MSH1 Tm ppm 0.1 hits-MSB/ Th ppm ġ. * ~ ? ? o 😫 ⇔ o ≌ eo ∓ co e co A the second sec Sample Description 33201 33202 33202 33206 33206 33206 33206 33210 33211 33215 33214 33215 33214 33216 33216 33218 33218 33220 33220 33221

2006 Drill Core Assay's

Jubz Akroz138	
Mathodz AAL_FASOAUMA	
Jub A6049698 A604968 A60498 A604968 A604988 A604988 A60498	
Method Method 0.01 ACME 77F 0.02 ACME 77F 0.03 ACME 77F 0.01 ACME 77F 0.03 ACME 77F	
%Y 7.8 7.9 7.9 7.0 <	
1.3% 1.0005 0	
Sm ⁸ Sm ⁹ Sm ⁹ S	
No. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
New Control of the co	
0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	
C C C C C C C C C C C C C C C C C C C	
end pdd 2 20 2 20 2 20 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
៹ 6 9 ೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲ	
 (M) <li(m)< li=""> <li(m)< li=""> (M) (M)</li(m)<></li(m)<>	
(1) (1) (1) (1) (1) (1) (1) (1)	
อ ยี่ ยี่ ยี่กับขุดการการการการการการการการการการการการการก	
To (1) To (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1)<	
Πα (†) 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td></td>	
Sample C204501 C204502 C204503 C204506 C204506 C204506 C204506 C204506 C204516 C204517 C204517 C204517 C204517 C204517 C204516 C2045618 C2	
Hole ID CASS 08-10 CASS 08-10 CAS	

Job2 Job2 AK02136 AK02136 AK02138 AK02138 AK02138	AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136	AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136 AK02136	ANX2736 ANX2738 ANX2738 ANX2739 ANX2739 ANX2738 ANX273	AK02136 AK02136 AK02136
Method2 AAL_FA30AuAg AAL_FA30AuAg AAL_FA30AuAg AAL_FA30AuAg AAL_FA30AuAg AAL_FA30AuAg	AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG AAL_FASDAVAG	AAL FASOWAR AAL FASOWAR	ANL FASONING ANL F	AL_FA30AWA9 AL_FA30AWA9 AL_FA30AWA9 AL_FA30AWA9
Job A604998 A604998 A604988 A604988 A604988 A604988 A604988	A604508 A60450	A504998 A5044998 A5044988 A5044888 A5044988 A50448888 A50448888 A50448888 A5044888 A5044888 A504488888	A004999 A004999 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998 A004998	A604998 / A604998 / A604998 / A604998 / A604998 / A604998
6 Mathod 0.03 ACME 7PF 0.02 ACME 7PF 0.01 ACME 7PF 0.01 ACME 7PF 0.01 ACME 7PF 0.01 ACME 7PF 0.01 ACME 7PF	0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.03 AGME 7PF 0.03 AGME 7PF 0.02 AGME 7PF	0.03 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.02 AGME 7PF 0.03 AGME 7PF 0.	0.03 AGME 77F 0.03 AGME 77F 0.04 AGME 77F 0.03 AGME 77F 0.01 AGME 77F 0.01 AGME 77F 0.01 AGME 77F 0.01 AGME 77F 0.03 AGME 77F	0.03 ACME 7PF 0.04 ACME 7PF 0.03 ACME 7PF
7% Zn ⁹ 0.005 0.005 0.005 0.005 0.015 0.015 0.015	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.01 0.00500000000	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	0.005
a"s 0.005 0.005 0.005 0.005 0.005 0.005	0.005 00000000	0,005 0,000 0,005 0,005 0,005 0,005 0,000 0,005 0,000000	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	0.005
85 0.01 0.05 0.05 0.02 0.02 0.02 0.02	0.07 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.02 0.01 0.01 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03	0.00 0.03 0.03 0.03 0.04 0.04 0.04 0.00 0.00	0.15
NIK 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 00000000	0,000 0,000000	0,000 0,0000 0,0000 0,000000	0.005 0.005 0.005
Nb 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.000 0.0000 0.00000 0.00000 0.00000 0.000000	0.005 0		0.005
Fe% 1.14 0.61 0.64 0.64 0.68 0.68 0.68 0.68	0.120 0.1200 0.1200 0.1200 0.120000000000	0.75 0.76 1.05 1.15 1.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	0.02 1.03 1.03 1.04 1.03	64-1- 20-1-
Cu% 0.01 0.01 0.01 0.01 0.01 0.01 0.01		0.01 0.01 0.01 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0000 0.0100 0.0100 0.00000 0.00000 0.00000 0.00000 0.000000	2000 2000
C 1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00				0.00
8 8 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	20000000000000000000000000000000000000	00000000000000000000000000000000000000		0.07
÷ ធំដ√ ដំ	៴៷ <i>4</i> ៷ <i>⊷</i> − ៰ ο 4 − − 4 4 0 0 4 4 8 ∽ 9 ∽ 9 ∽ 6 0 0 0 0 4 ~ 4 8 0 0 0 0			882
Au_ppb 2.2 3.3 3.3 3.4	<i>ن خ ب خ دن و، و، خ دو و، و</i> در د د. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	<i>ᲜᲐᲜᲗᲝᲙᲐᲡ</i> ᲐᲦᲓᲐᲓ <i>44</i> ,ഗᲓᲓ4 ₽₽₽₽	4 μθ φ - φ - φ - φ - φ - φ - φ - φ - φ - φ	- e - e
To(M) 76 77 80 82	222222222222222222222222222222222222222	100 100 100 100 111 111 111 111 111 111	2752 ° C C C C C C C C C C C C C C C C C C	9 8 8 8 1
From(M) 73.2 74.4 75.4 76.2 76.2 76.2 76.2 76.2 76.2 76.2	88 88 88 88 88 88 88 88 88 88 88 88 88	98.1 102.6 102.6 102.5 107.6.5 107.6.5 107.6.5 108.2 108.2 111.4.3 111.4.3 111.4.3 111.4.3 111.6.7 111.6.7 111.6.7	1215 1215 1215 1215 1215 1215 1215 1215	35.1 36.6 38.1
Length (ដី) 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ស ស ស ស ក ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស	មកក្រុម (() បាលក្រុម () () () () () () () () () () () () ()	មក ក្រស់សំលកក្រស់សំលំក កំពុស់ក្នុងក្រភាពសំណ័ត្រកាត់ ភ្លាំ សំលកកាត់ សំលំលឹក កំពុស់សំក្នុងក្រភាពសំណ័ត្រ ហាត់	מ מ מי
To (ff) 244 255 260 260 260 260 260 260 260 270 270 270 270	2714 2774.5 2775 285 285 286 286 289 289 289 289 289 289 289 289 289 280 5 305 305 305 305 305 305 305 325 325 325 325 325 325 325 325 325 32	330 330 345 345 345 345 345 345 345 345 345 375 375 375 375 375 375 375 375 375 37	8,8,8 9,9 9,9 9,9 9,9 9,9 9,9 9,9 9,9 9,	126
From (11) 240 244 255 255 255 255 255 255 255 255 255	200 273.5 273.5 274.5 277 281 281.5	325 325 330 336 340 340 340 340 340 355 365 370 370 370 370 370 370 370 370 370 370	888 888 888 888 888 888 888 888 888 88	115 125
Sample Sample 0 2204572 0 2204572 0 2204573 0 2204574 0 2204575 0 2204575 0 2204575	2204579 2204579 2204579 2204580 2005000 2005000 200500000000	2204593 2204594 2204594 2204596 2204596 2204596 2204598 2204598 2204598 2204607 200457 2005 2005 2005 2005 2005 2005 2005 20	 C2040110 C204011 C204013 C204013 C204013 C204014 <lic2044< li=""> <lic2044< li=""> C</lic2044<></lic2044<>	C204638 C204639 C204640 C204640
Hote ID CASS 06-1(CASS 06-1(CASS 06-1(CASS 06-1(CASS 06-10 CASS 06-10 CAS	CASS 06-11 CASS 06-11	CASS 06-1(CASS 06-1() CASS 06-1()	CASS 08-11 CASS 08-11	CASS 06-11 CASS 06-11 CASS 06-11 CASS 06-11

Job2 Ak02138	
Майрабз ААL_FA30АШАр	
JUD ARCV4988 ARCV498 ARCV498 ARCV498 ARCV4988 ARCV4988 ARCV4988 ARCV4988 ARCV4988 ARCV4988 ARCV4988 ARCV4988 AR	
6 Method 0.03 AGME TPF 0.01 AGME TPF 0.01 AGME TPF 0.01 AGME TPF 0.01 AGME TPF 0.01 AGME TPF 0.01 AGME TPF 0.03 AGME TPF 0.03 AGME TPF 0.03 AGME TPF 0.04 AGME TPF 0.03 AGME TPF 0.03 AGME TPF <td></td>	
7. 10.00 7.11 7.11 7.12 7.10 <p< td=""><td></td></p<>	
V 1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
MM 0.0000 0.00000 0.00000 0.0	
Mb% 2005 2005 2005 2005 2005 2005 2005 2005	
Fe% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	
C 28 C 28 C 28 C 28 C 28 C 28 C 28 C 28	
ですようが、100~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
AL 2012 2012 2012 2012 2012 2012 2012 201	
81/20/208888898944440000044444446899/2012/2012/2014/2018/2014/2018/2014/2018/2014/2014/2014/2014/2014/2014/2014/2014	
PFrom(M) 38, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	
8 8 4 4 9 4 9 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9	
Total 201 </td <td></td>	
Tom Tom Tom Tom Tom Tom Tom Tom	
Sample Sample C2004843 C2004843 C2004843 C2004846 C2004846 C2004856 C2004857 C2004877 C200487 C200487	
Hole ID Cass 06-11 Cass 06-11 Cas	

Job2 Ak02138 Ak02138 Ak02138 Ak02138 Ak02138 Ak02138 Ak02138 Ak02135 Ak02155 A	AK02155 AK02155 AK02155 AK02155 AK02155
Мейпод А.Ц. ЕАЗОАЧИА А.Ц. ЕАЗОАЛИА А.Ц. ЕАЗОАЧИА А.Ц. ЕАЗОАЧИА А.Ц. ЕАЗОАЛИА А.Ц. ЕАЗОАЛИА А.Ц. ЕАЗОАЛИА А.Ц. ЕАЗОАЛИА А.Ц. ЕАЗ	AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg
Jub Acrustons Ac	A605541 A605541 A605541 A605541 A605541 A605541
8 Method 0.014 CAURE 77F 0.014 CAURE 77F 0.014 CAURE 77F 0.015 ACAUE 77F 0.015 ACAUE 77F 0.015 ACAUE 77F 0.015 ACAUE 77F 0.013 ACAUE 77F 0.013 ACAUE 77F 0.013 ACAUE 77F 0.013 ACAUE 77F 0.013 ACAUE 77F 0.014 ACAUE 77F 0.013 ACAUE 77F 0.014 ACAUE 7	0.01 ACME 7PF 0.01 ACME 7PF 0.03 ACME 7PF 0.02 ACME 7PF 0.01 ACME 7PF
7. 21 0.005	0.01 0.04 0.02 0.02 0.02
W 2000 0.0005	0.005 0.005 0.005 0.005 0.005
1.1.1 Service 2.1.1 Service	0.03 0.1 0.03 0.03
<pre>%************************************</pre>	0.01 0.01 0.005 0.01 0.01
Nb% 1005 1005 1005 1005 1005 1005 1005 100	0.005 0.005 0.005 0.005 0.005
Fag. 1.45 1.45 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	2.65 3.22 3.69 3.69 1.83
Current constraints of the current constraints of the current constraints of the current curre	0.01 0.11 0.15 0.04
	0.0
	0.13
。	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
あれのこのぷことごごぶのののたちのみののののですでのこのであるかのなどののですかの「の」をする。 と で で も し し し し し し し し し し し し し	8 0 4 0 0 5 % - 2 7
(W) (M) などがなななどはあるたまままたままでで、 B D D D D D D C C C C C C C C C C C C C	22 22 22 22 22
From (M) 131.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	56.4 57.3 59.4 50.4 61.0
6 5 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 OL OL OL OL OL
To (1) (1) 485 485 485 485 485 485 485 485	188 196 200 205
Tom Tom 70 400 450	183 190 195 200
Sample C204715 C204716 C204716 C204719 C204719 C204721 C204726 C204726 C204728 C204728 C204728 C204728 C204739 C204739 C204738 C204738 C204748 C204748 C204748 C204746 C204748 C204765 C204776 C204776 C204776 C204777 C20477 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C2047777 C204777777777 C204777777777777777777	C204779 C204779 C204781 C204781 C204782
Hole ID CASS 06-11 CASS 06-12 CASS 06-12 CAS	CASS UB-12 CASS 06-12 CASS 06-12 CASS 06-12 CASS 06-12

Job2 AK02155	AK02155 AK02155	AK02165	AK02155	AK02155 AK02155	AK02155	AK02155	AK02155	AK02155 AK02155	AK02155	AK02155	AK02155	AK02155	AK02155	AK02155	AK02155	AK02155	AK02100	AK02155	AK02155	AK02155	AK02155 AK02155	AK02155	AK02155	AK02155	AK02155 AK02165	AK02155	AK02155	AK02155	AK02155	AK02155 AK02155	AK02155	AK02155 AK02155	AK02155	AK02155	AK02155	AK02155 AKn2155	AK02155	AK02155	AK02155 AK02155	AK02155	AK02155 AK02155	AK02155	AK02155	AK02155	AK02155	AK02155 AK02155	AK02155	AK02155	AK02155 AK02155
Method2 AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30AU/Ag	AAL_FA30Au/Ag	AAL FA30AWAg	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA3UAU/Ag	AAL_FA30AU/Ag	AAL_FA30Au/Ag	AAL_FA30AWAG	AAL FA30Au/Ag	AAL_FA30AU/Ag	AAL_FA30Au/Ag	AAL_FA30AU/Ag	AAL FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30AWAg AAL_FA30AWAg	AAL_FA30AU/Ag	AAL_FA30Au/Ag	AAL FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30AWAg	AAL_FA30Au/Ag	AAL FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30AU/Ag	AAL_FA30AU/Ag	AAL_FA30AWAg	AAL_FA30AU/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30AU/Ag	AAL_FA30Au/Ag	AAL_FA30Au/Ag	AAL_FA30AWAg	AAL_FA30AWAg AAL_FA30AWAg
Job A605541	A605541	A005541	A605541	A605541 A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A805541	A805541	A805541	A605541	A605541	A605541	A605541	A605541	A605541	A605541 A605541	A605541	A606541	A605541	A605541	A605541 A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541	A605541 A605541	A605541	A806541 AR05541	A605541	A605541	A606541	A605541	A005541 A605541	A605541	A805541	A605541 A605541
Method 0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF 0.02 ACMF 7PF	0.03 ACME 7PF	0.02 ACME 7PF	0.05 ACME 7PF	0.03 ACME 7PF	0.03 ACME 7PF	0.03 ACME 7PF	0.03 ACME 7PF	0.02 ACME 7PF	0.03 ACME 7PF	0.06 ACME 7PF	0.05 ACME 7PF	0.02 ACME 7PF	0.02 ACME /PF	0.02 ACME 7PF	0.05 ACME 7PF	0.03 ACME 7PF	0.02 ACME /PF	0.03 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.03 ACME 7PF 0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.03 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF 0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.04 ACME 7PF	0.02 ACME /PF	0.16 ACME 7PF	0.06 ACME 7PF 0.01 ACMF 7PF	0.01 ACME 7PF	0.01 ACME 7PF	0.01 ACME 7PF	0.01 ACME 7PF	0.02 ACME 7PF	0.02 ACME 7PF	0.03 ACME 7PF	0.02 ACME 7PF 0.03 ACME 7PF
Zn5; 0.03	0.03	0.01	0.03	0.03	0.01	0.01	0.02	20.02	0.04	0.005	0.005	0.01	0.005	0.005	0.005	0.005	500.0	0.03	0.01	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.03	0.01	0.005	0.02	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.02	0.01	0.005	0.005	0.005	0.005
0.005 We	0,005	0.005	0.005	0.005	0,005	0.005	0,005	0.005	0.005	0.005	0.006	0.005	0.005	0.005	0.005	0.005	0,005	0.005	0.005	0.005	200.0	0.005	0.005	0.005	0.005	0.005	0.005	0,005	0.005	0.005	0.005	0.006	0.005	0.005	0.005	0.01	0.005	0.01	0.0	0.01	0.005	0.01	0.01	0.005	0.005	0.01	0.01	0.01	0.01
% Ta": 0.03	0.005	0.03	0.005	0.005	0.01	0.04	0.005	0.01	0.04	0.005	0.005	0.005	0.08	t 000	0.005	0.005	0,005	0.01	0.01	0.01	500.0	0.01	0.04	0.03	0.02	0.06	0.005	0.03	0.005	0.05	0.005	0.005	0.05	0.05	0.05 0.05	0.03	0.05	0.05	60.0	0.05	0.03	0.03	0.02	0.08	0.01	0.1	0.005	0.01	0.005
6 Sn ¹	0.0	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005	10.0	0.01	0.005	0.01	0.005	0,005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.05	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	c00.0	0.005	0.005	0.005	0.005	D.01	0.01	0.01	0.005	0.005	0.005
% NI ⁵ 0.000	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0,005	0.005	0.005	0,005	0.005	0.005	0,005	0.005	0.005	0.005	0.005	0.005	0,005	0.005	9,005 0,005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	D.005	0.005	400'0 0.005
Nb 2.78	1.01	1.42	1.65	1.3	1.32	2,69	1.32	1.154	4.14	1.22	1.65	1.39	5.5	1.52	3.03	1.3	2.50	3.33	1.51	1.13	90.L	1.53	1.62	2.35	1.54	2.98	1.18	2.12	1.26	101	0.97	1.09	1.23	1.13	1.2	1.43	1.66	5.8	4.3	3.97	3.26	1.3	3.22	2.78	1.87	1.84	1.15	1.09	1.03
.01 -01	6.6	205	10	500	5	.02	5	10.	50	10	201	38	20.10	50	8	50	8	8	05	88	5.0	50	05	.03 2	10. 1 0	01	02	5 6	05	202	8	502	86	10	5 6	10	3 5	58	5.1	23	6 10	8	85	55	5 5	88	88	8	28
24 Cu%	84	0.0	8	00	N N	2	20	25	18	89	22	20	8	200	8	800		14	3 0.0	20.0	20	20	3 0.0	8	000	4	0.0	20	0.0	0 0 0	0.0	0.0	20	00	20	02	50 20	00	5 - 5 -	00	4 0	0.0	0.0 0.0		50	, 4	0.0 0.0	30.0	500 000
Cr% 2 0.0	4 000	1 0.0	4	2 0.0	1 0.0	2 0.0	2 0.0		1 0.0	1 0.0		8	2 0.0	8 0.0	1 0.0	1.00	8	0.0	1 0.0	1 0.0	0.0	7 0.0	9 0.0	1 0.0	0'0 8	2 0.0	7 0.0	0.0 B	1 0.0	8 0.0	7 0.0	9 0.0	0.0	1 0.0	1 0.0	8 0.0	1 0.0	0.0	000	0.0	0.0	0.0	0.0	0.0		000	880	0.0	500 500
3% 0.0		-0			0	0.1		56	0.2	0	5 0	0.0	0.0	0.0	Ó	0	o c	0	0.1	e, S	0.0	0	0'0	0.1	0.0	0.2	0.0	0.10	0.1	0.0	0.0	0.0	0.0	0	5.0	0.0	0	0.0	. 1.0	0.0	0.0	0.1	0.0	120	0.2	0.1	000	0.0	50
д ррт В 15.1	2.4	4.2	0.0	3.0	1.4	5.3	0.5	0.0	0.5	0.5	0.5	0.5	15.1	21.8 D.6	0.5	0.5	0.0	0.5	0.5	0.5	0.0	3.9	0.5	3.0	0.5	8.4	0.5	8,0	0.5	0.5	0.5	1.5	3.2	2.2	0.5	14.3	4.0	8.3	0.5	23.2	2.1	7.5	0.0	88.2	36.3	33.6	5.0 31.0	1.5	4.4 6.4
, tt	n 5	i no	un u	n n	ŝ	ß	ע קע	0 10	18	14	9 4	35	19	2	18	18	P 5	52	17	17	n u	o lo	ŝ	15	in in	ŝ	uc u	מיכ	ις, ι	20 40	o vo	8	29 ^a	25	53 IA	25	C2 €	23	3 8	26	3	uo i	in in	15	ę ę	2 ₽	t 1	io i	o vo
63.4 Au	64.5 64.6	65.5	67.1	00.5 69.5	70.1	71.8	72.7	74.7	75.6	78.2	70.9	7.8.7	80.8	82.8	83.4	83.8	88.0	88.4	8°8	91.4 20.0	93.U	90.09	1.78	99.4	00.6	01.8	03.0	05.3	06.7	09.7	11.3	12.8	15.8	17.3	20.4	21.9	20.4	25.0	28.0	29.5	32.6	24.1	35.B	37.2	23.7	41.4	41.7 43.3	44.8	46.9
To(M)																										-												~ •						-	* *	- -	÷÷	÷.,	
m(M) 62.5	63.4	64.6	86.5 2	07.1 08.6	69.5	70.1	71.6	73.5	74.7	75.6	77.7	79.2	78.7	82.3	82.8	83.4	85.3	86.9	88.4	83.9	91.4 03.0	94.5	96.0	7.78	100.6	101.2	101.8	103.8	105.3	106.7	109.7	111.3	114.3	115.8	116.9	120.4	122.5	123.4	126.5	128.0	131.2	132.6	134.1	135.6	137.2	140.2	141.4	143.3	144.o
ngth (ft) Fro 3	2.5	63	un u	იო	2	LD	3.5	0, 1	3	0	ດເດ	, 1 , 5, 6	3.5 2	0 Q	10	1. 13. r	n (c	n ro	ŝ	ι ρ ι	nu	o vo	5.5	5,5	4 0	0	4 c	o uo vi	4.5	io io	າທ	ע כע	n in	ແດຍ	a io	ŝ	מא	un u	מי כ	IO U	0.4	io 1	4 +-	- cu	מי הו	4	- v	ιο ι	n N
(ft) 208	210.5	215	220	228	230	235	238.5	245	248	250	092	261.5	285	271.5	273.5	275	285	290	295	300	8 2	315	320.5	326	88 88 88 88	334	338	345.5	350	365 360	365	370	380	385	385	400	405	410	420	425	430.3	440	445 445	450	455 460	464	465 470	475	480 482
From (ft) To 205	208	212	215	225	228	230	235 736 E	241	245	248	255	260	261,5	270	271.5	273.5	080	285	290	295	900 900	310	315	320.5	326 330	332	334 228	340.5	345.5	350 355	360	365	375	380	380	385	402	405	415	420	430.5	435	444	445	450 455	460	465 465	470	480
Sample C204783	C204784 C204785	C204786	C204788	C204790	C204791	C204792	C204793	C204795	C204797	C204798	C2D4R00	C204801	C204802	C204804	C204805	C204806	0204808	C204809	C204810	C204811	C204812	C204815	C204816	C204817	C204818 C204819	C204820	C204821	C204823	C204824	C204825 C204826	C204827	C204828	C204831	C204832	C204834 C204834	C204835	C204837	C204838	C204840	C204811	C204843	C204844	C204545	C204847	C204848	C204850	C204851 C204852	C204863	C204855
Hole ID CASS 06-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 08-12	CASS 08-12 CASS 08-12	CASS 08-12	CASS 08-12	CASS 06-12	CASS 08-12 CASS 08-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 08-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 08-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 06-12 CASS 06-12	CASS 06-12	CASS 08-12

Jub2 AK02155 A	AK02155 AK02155 AK02155 AK02155 AK02155
Method2 ALL-FASOAWAG	AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg AAL_FA30AUAg
	A805541 A805541 A805541 A805541 A805541
Method Method	0.03 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.03 ACME 7PF 0.03 ACME 7PF
7.3 7.4 7.5 7.005 7.0	0.01
V 127 127 127 127 127 127 127 127 127 127	0.005
Safa Safa 0.005 0.	0.02
NFX NFX 0.005 0.00	0.005 0.005 0.005
	0.005
	1.05
2 7	8 8 5 8 0 0 0 0 0
	2 2 2 2 2
້າດອາດອາດອາດອາດອາດອາດອາດອາດອາດອາດອາດອາດອາ	a a a a a
Au_pp 447.8 447.8 447.8 447.8 44.9 44.9 44.9 44.4 44.4 44.4 44.4 44	3.8
1989年2月19日19月19日の19月19日の19月19日の19月19日19月19日19月19日の19月19日の19月19日の19月19日の19月19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日の19日19日19日19日19日19日19日19日19日19日19日19日19日1	
(1) (1) (1) (1) (1) (1) (1) (1)	8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	4 0 0 0 0 0 0
(1) (1) (1) (1) (1) (1) (1) (1)	262.5
E E A A A A A A A A A A A A A	262.15 262.15 271
Sample Sample C204858 C204858 C204858 C204858 C204867 C204867 C204867 C204867 C204877 C204877 C204877 C204877 C204877 C204877 C204877 C204877 C204877 C204878 C204888	C204925 C204926 C204927 C204928
Hole ID CASS 09-12 CASS 09-12 CASS 09-12 CASS 09-12 CASS 09-12 CASS 09-13 CASS 09-13 CAS	CASS 06-13 CASS 06-13 CASS 06-13 CASS 06-13 CASS 06-13

Job2 Av02155 Av020155 Av020155 Av020155 Av020155 Av020155 Av020155 Av02000 Av02000 Av000000 Av000000 Av000000 Av000000 Av00000 Av000000 Av0000	
Мейнод ААL_FАЗОАИИА	
Jub 20055641	
6 Method 0.02 ACME TPF 0.03 ACME TPF 0.03 ACME TPF 0.01 ACME TPF 0.01 ACME TPF 0.01 ACME TPF 0.02 ACME TPF 0.03 ACME TPF 0.03 ACME TPF <td></td>	
7. 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	
Value 1000 Value 10000 Value 10000 Value 1000 Value 1000 Value 10000 Val	
Sirfs Sir	
NN 2000 20	
No. 2000 No. 20	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
min min 3.5 3.5 3.5	
⊕	
Aug. Aug. Aug. Aug. Aug. Aug. Aug. Aug.	
M) To(N) To(
นี้ (5.8.6.1 อ.ศ.ค.ศ.ค.ศ.ค.ศ.ค.ศ.ค.ศ.ค.ศ.ศ.ศ.ศ.ศ.ศ.ศ.	
(11) [11] [12] [12] [12] [12] [12] [12] [12]	
From (1) From (1) 2885 2885 2885 2885 2885 2885 2885 2885 3355	
Sampla Sampla C2044929 C2044938 C2044938 C2044938 C2044938 C2044938 C2044938 C2044946 C2044946 C2044946 C2044946 C2044946 C2044966 C2044966 C2044976 C2044966 C2044976 C2044966 C2044976 C2044966 C2044976 C2044966 C2044978 C2044966 C2044978 C2044966 C2044978 C2044966 C2044978 C2044966 C2044978 C2044988 C2044888 C2044888 C2044888 C2044888 C2044888 C2044888 C204488	
Hole ID Casss 06-13 Casss 06-14 Casss 06-14 Cass 06-14 Cass 06-14 Cass 06-14 Cass 06-14 Cass 06-14 Cass 06-14 Cass 06-14	

Job2 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155	AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155	AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155	AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155	AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155 AK02155	AK027155 AK02755 AK02755 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027555 AK027
Method2 AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag	AAL_FA30AWAg AAL_FA30AWAg AAL_FA30AWAg AAL_FA30AWAg AAL_FA30AWAg AAL_FA30AWAg AAL_FA30AWAg AAL_FA30AWAg	AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag AAL_FA30Au/Ag	AAL_FA30Aurag AAL_FA30Aurag AAL_FA30Aurag AAL_FA30Aurag AAL_FA30Aurag AAL_FA30Aurag AAL_FA30Aurag AAL_FA30Aurag	AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG AAL_FASOAWAG	ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА ААL_FАЗОАИХА
Job A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541	A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541	A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541	A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541 A605541	A805541 A805541 A805541 A805541 A805541 A805541 A805541 A805541 A805541 A805541 A805541 A805541	A005541 A005541
Mathod 0.03 AGME 7PF 0.01 AGME 7PF 0.01 AGME 7PF 0.01 AGME 7PF 0.01 AGME 7PF 0.03 AGME 7PF 0.03 AGME 7PF 0.04 AGME 7PF 0.02 AGME 7PF	0.01 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.03 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF	0.01 ACME 7PF 0.01 ACME 7PF 0.01 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.02 ACME 7PF 0.01 ACME 7PF	0.02 ACME 7PF 0.02 ACME 7PF	0.02 AGME 7PF 0.02 AGME 7PF 0.03 AGME 7PF 0.04 AGME 7PF 0.03 AGME 7PF 0.03 AGME 7PF 0.03 AGME 7PF 0.02 AGME 7PF	0.02 ACME 7PF 0.02 ACME 7PF 0.11 ACME 7PF 0.03 ACME 7PF 0.04 ACME 7PF 0.01 ACME 7PF 0.01 ACME 7PF 0.02 ACME 7PF 0.03 ACME 7PF 0.
% Zri 0.005 0.005 0.005 0.005 0.005 0.005 0.02	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0005 0005 0005 0005 000500000000
a% 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005	0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	200.0 200.00
n% 0.16 0.01 0.01 0.02 0.01 0.04 0.19 0.15	0.03 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005	0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03	0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.03 0.03 0.03	0.05 0.005 0.005 0.007 0.007 0.007 0.00500000000
VI% S	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0	0.005 00000000
Nb% 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Fe% 1.642 1.642 1.642 1.642 1.642 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.7	2 - 1- 2 - 2 - 2 - 2 - 2 - 2 - 1- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1.17 1.38 1.38 1.28 1.28 2.51 2.51 2.51	1.53 1.66 1.2 1.2 1.37 1.53 1.54 1.54 1.53 1.54 1.53	1.26 1.12 1.12 1.12 1.12 1.12 1.28 1.12 1.28 1.12 1.28 1.28	1.28 3.28 0.98 1.62 1.62 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.3
Cu% 0.02 0.005 0.005 0.016 0.016 0.016 0.02	0.01 0.005 0.03 0.03 0.03 0.03 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.01 0.01 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.02	0.008 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.005 00000000
Gr% 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.02 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 00000000	0,000 0,000000
8% 0.08 0.07 0.07 0.07 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.09	0.11 0.26 0.38 0.33 0.33 0.33 0.33 0.33 0.33 0.33	0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.18 0.07 0.07 0.07 0.06 0.07 0.06	0.07 0.07 0.16 0.17 0.07 0.07 0.07 0.07 0.07 0.110 0.110 0.110 0.110 0.110	0.12 0.12 0.08 0.09 0.01 0.01 0.01 0.00 0.00 0.00 0.00
40. ppm 11.2 0.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.1 7 2.1 7 2.1 7	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	8.8 2.7 2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	9797979 79797979 797979797979 79797979		88.2 81.1 11.8 11.8 11.8 11.8 11.8 11.8
د 2323 19 0 مەمەمر 2323 19	်းကပ်းနော်ကလ်နော်စာ	ດດວນດາດ 1005 1005 1005 1005 1005 1005 1005 100	и ю и и и и и 2 6 6		ສິດທຸດທຸດທຸດສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສ
M) 33.7 36.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38	45.4 48.6 50.3 51.8 53.3 55.8 55.8	56.4 57.9 61.0 62.5 63.2 63.2 65.5	67.1 68.6 70.1 73.2 74.7 74.7 76.2 76.2 77.1	791 801 801 801 801 801 801 801 801 801 80	945 945 97,5 98.1 98.1 98.1 100.6 100.5 100.5 100.7 111.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.
n(M) 32.0 33.7 35.1 35.1 36.6 36.6 38.9 38.9 38.9 38.9 38.9 38.9 38.9 38.9	44 4 45.7 51.3 51.3 51.3 51.3 54.9 54.9	55.6 56.4 57.9 59.4 61.0 63.2 63.2 64.0	65.5 67.1 68.8 68.8 70.1 71.6 73.2 73.2 73.2 73.2 77.1	77.7 79.2 80.8 82.3 88.9 88.9 88.4 88.4 88.4 88.4 88.4 88.4	945.0 945.9 945.9 97.5 92.1 100.6 100.2 100.2 100.2 111.3 111.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 111
gth (f) 4 5 5 2 4 5 5 2 4 5 5 2 5 5 5 5 2 5 5 5 5 2 5 5 5 2 5 5 5 2 5 5 2 5 5 2 5 5 2 5 5 5 5	ស្រ ស ស 04ស្សល់លសល់សំ	ស្រុស សេលលា ស្រុស សេលាលា	າດ ທ ດາ ດາ ດາ ດາ ດາ ດາ	א פו מו דיז (א מו מי מו מו מו מו מו	າ ຜາ
(f) 110.5 110.5 125 127.5 127.5 127.5 127.5 127.5 128 138 138 138 138 138 138 138 138 138 13	158.5 158.5 170 176 182.6	185 190 200 215 210 215 215 215	220 235 235 245 245 253 253 255	285 285 285 285 285 285 285 285 285 285	310 310 325 325 326 335 345 345 345 345 345 345 375 375 375 375 375 375 375 375 375 37
From (ft) To (105 110.5 115 120 125 125 135 130 135	145 150 158.5 178 175 175 180	182.5 185 195 195 205 205 205 210	215 226 225 230 230 245 245 245 245 253	255 260 260 260 275 275 285 285 285 285 285 285 285 285 285	305 3105 3105 3115 320 320 320 320 320 320 320 320 320 320
Sample C205504 C205506 C205506 C205506 C205506 C205506 C205510 C205511 C205512 C205512	C205514 C205516 C205516 C205516 C205516 C205519 C205519 C205520	C205521 C205522 C205523 C205523 C205523 C205528 C205528 C205528 C205528	C205529 C205530 C205531 C205533 C205533 C205533 C205533 C205538 C205538 C205538	C206530 C206540 C206541 C206542 C206543 C206544 C206544 C206544 C206544 C206544 C206549 C206549 C206550 C206550	2205551 2205552 2205554 2205554 2205557 2205556 22055561 22055561 22055561 2205566 2205566 2205566 2205566 2205566 2205566 2205566 2205567 2205566 2205567 22055567 2205557 220557 220557 2205557 2205557 220557 220557 220557 220557 220557 220557 220557 220557 220557 20057 220557 20057 20
Hole ID CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14	CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14	CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14 CASS 06-14	CASS 06-14 CASS 06-14	CASS 06-14 CASS 06-14	CASS 06-14 CASS 06-14

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 1	91321	11.2	14.9	3.7	1800	5.8	3.4	4.5
CASS 1	91322	14.9	21.7	6.8	120	1.8	4.5	6.6
CASS 1	91323	21.7	25.3	3.6	1040	2.0	6.6	7.7
CASS 1	91324	25.3	29.9	4.6	2400	8.4	7.7	9.1
CASS 1	91325	29.9	34.0	4.1	3000	10.0	9.1	10.4
CASS 1	91326	34.0	38.9	4.9	1000	6.8	10.4	11.9
CASS 1	91327	38.9	45.0	6.1	260	4.8	11.9	13.7
CASS 1	91328	45.0	50.0	5.0	120	2.2	13.7	15.2
CASS 1	91329	50.0	55.0	5.0	80	2.2	15.2	16.8
CASS 1	91330	55.0	60.0	5.0	80	3.2	16.8	18.3
CASS 1	91331	60.0	65.0	5.0	130	1.0	18.3	19.8
CASS 1	91332	65.0	70.0	5.0	170	2.6	19.8	21.3
CASS 1	91333	70.0	75.0	5.0	20	22.0	21.3	22.9
CASS 1	91334	75.0	80.0	5.0	40	0.6	22.9	24.4
CASS 1	91335	80.0	85.0	5.0	60	0.4	24.4	25.9
CASS 1	91336	85.0	90.0	5.0	140	22	25.9	27.4
CASS 1	91337	90.0	93.5	3.5	540	1.6	27.4	28.5
CASS 1	91338	93.5	98.0	4.5	20	2.8	28.5	29.9
CASS 1	91339	98.0	103.0	5.0	140	14.0	29.9	31.4
CASS 1	91340	103.0	109.0	6.0	100	54	31.4	33.2
CASS 1	91341	109.0	115.9	6.9	50	22	33.2	35.3
CASS 1	91342	115.9	119.9	4.0	620	12.0	35.2	36.5
CASS 1	91343	119.9	123.9	4.0	200	11.0	36.5	37.8
CASS 1	91344	123.9	129.0	5.1	150	4.0	37.8	30.3
CASS 1	91345	129.0	134.2	52	120	4.0	30.3	40.0
CASS 1	91346	134.2	139.2	5.0	490	17.0	40.9	42.0
CASS 1	91347	139.2	144.0	4.8	50	2.0	40.0 A2 A	130
CASS 1	91348	144.0	148.5	4.5	60	1.8	43.0	45.3
CASS 2	91547	7.0	10.0	3.0	800	9.2	2 1	30
CASS 2	91548	10.0	15.0	5.0	30	2.6	3.0	4.6
CASS 2	91549	15.0	20.0	5.0	16	2.0	4.6	61
CASS 2	91550	20.0	25.0	5.0	20	2.2	6.1	76
CASS 2	91451	25.0	30.0	5.0	70	22.0	7.6	9.1
CASS 2	91452	30.0	35.0	5.0	16	4.6	Q 1	10.7
CASS 2	91453	35.0	40.0	5.0	170	17.0	10.7	12.2
CASS 2	91454	40.0	45.0	5.0	270	9.6	12.2	13.7
CASS 2	91455	45.0	51.2	6.0	170	2.6	13.7	15.6
CASS 2	91456	51.2	54.5	3.3	3600	45.0	15.6	16.6
CASS 2	91457	54.5	60.0	5.5	160	22	16.6	18.3
CASS 2	91458	60.0	65.0	5.0	100	1.8	18.3	10.0
CASS 2	91459	65.0	70.0	5.0	300	22	10.5	21.3
CASS 2	91460	70.0	75.0	5.0	60	2.2	21.3	21.0
CASS 2	91461	75.0	80.0	5.0	540	2.8	21.5	22.5
CASS 2	91462	80.0	85.0	5.0	500	2.0	24.5	24.4
CASS 2	01463	85.0	90.0	5.0	100	1.4	24.4	20.9
CASS 2	01464	00.0 00.0	05.0 05.0	5.0	120	1.0	20.9	21.4
CASS 2	01/65	05.0 05 N	100.0	5.0	2500	1.4 E /	21.4	29.U
CASS 2	Q1466	100 0	105.0	5.0	120	0.4 ∦ 0	29.U 20 E	20.0
CASS 2	Q1/A67	105.0	110.1	1.0	120	4.2	20.0	32.U
CASS 2	01/69	110.1	115.0		1/100	0.0	32.U	33.3 25 4
CASS 2	01/60	115.0	120.0	5.0	1900	0.U 10 0	00.0 25 4	30.1
SHOUL	01408	110.0	120.0	5.0	1200	10.0	SO. I	30.0

CASS 2 91470 120.0 125.0 5.0 2600 13.0 38.6 38.1 CASS 2 91472 130.0 135.0 5.0 2700 30.0 39.6 41.1 CASS 2 91473 135.0 140.0 5.0 720 22.0 41.1 42.7 CASS 2 91474 140.0 143.2 22.00 12.0 42.7 43.6 CASS 2 91476 150.0 155.0 5.0 120 4.2 43.6 45.7 CASS 2 91476 150.0 155.0 5.0 120 4.2 44.8 50.3 CASS 2 91477 155.0 160.0 5.0 400 2.2 47.2 48.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 54.9 CASS 2 91481 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91482 180.0 185.0 5.0 310 4.8 57.9 59.4 <t< th=""><th>Hole-ID</th><th>_Sample #</th><th>From (ft)</th><th>To (ft)</th><th>Length (ft)</th><th>Sn (ppm)</th><th>Ag (ppm)</th><th>FromM</th><th>ТоМ</th></t<>	Hole-ID	_Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 2 91471 125.0 130.0 5.0 800 20.0 38.1 38.6 CASS 2 91473 135.0 140.0 5.0 770 22.0 41.1 41.1 CASS 2 91473 135.0 140.0 5.0 770 22.0 41.1 42.7 43.6 CASS 2 91476 143.2 150.0 6.8 120 4.2 43.6 45.7 CASS 2 91476 150.0 155.0 5.0 120 4.2 48.8 50.3 51.8 CASS 2 91479 165.0 170.0 5.0 6 0.6 50.3 51.8 CASS 2 91481 176.0 180.0 5.0 14 0.8 53.3 54.9 CASS 2 91481 185.0 190.0 5.0 460 4.4 54.9 56.4 CASS 2 91482 180.0 185.0 30.0 50 460 2.4 65.5 CASS 2 91484 190.0 195.0 5.0 1100 2.1 63.6 65.5	CASS 2	91470	120.0	125.0	5.0	2600	13.0	36.6	38.1
CASS 2 91472 130.0 135.0 5.0 2700 30.0 39.6 41.1 CASS 2 91474 140.0 143.2 3.2 2600 120.0 42.7 43.6 CASS 2 91475 143.2 150.0 6.8 120.0 4.2 43.6 45.7 CASS 2 91476 150.0 155.0 150.0 120 2.2 45.7 47.2 48.8 CASS 2 91477 155.0 160.0 5.0 40 2.2 47.2 48.8 50.3 CASS 2 91478 165.0 170.0 5.0 7 1.4 51.8 53.3 54.9 CASS 2 91481 175.0 180.0 5.0 14 0.8 53.3 54.9 CASS 2 91482 180.0 185.0 5.0 460 4.4 56.4 67.9 59.4 CASS 2 91484 190.0 195.0 5.0 16 56.4 59.4 61.0 62.5 67.1 CASS 2 91486 200.0 20.0 <	CASS 2	91471	125.0	130.0	5.0	800	20.0	38.1	39.6
CASS 2 91473 135.0 140.0 5.0 720 22.0 41.1 42.7 CASS 2 91475 143.2 150.0 6.8 120 4.2 43.6 45.7 CASS 2 91476 150.0 155.0 5.0 120 2.2 47.2 48.8 CASS 2 91477 155.0 160.0 5.0 40 2.2 47.2 48.8 CASS 2 91478 160.0 165.0 5.0 40.0 2.2 47.2 48.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91481 190.0 20.0 5.0 16 2.0 61.0 62.5 CASS 2 91482 190.0 20.0 5.0 110 21.0 63.6 64.2 CASS 2 <td>CASS 2</td> <td>91472</td> <td>130.0</td> <td>135.0</td> <td>5.0</td> <td>2700</td> <td>30.0</td> <td>39.6</td> <td>41.1</td>	CASS 2	91472	130.0	135.0	5.0	2700	30.0	39.6	41.1
CASS 2 91474 140.0 143.2 3.2 2600 120.0 4.2.7 43.6 CASS 2 91476 150.0 155.0 5.0 120 4.2 43.6 45.7 CASS 2 91476 150.0 155.0 5.0 120 2.2 45.7 47.2 CASS 2 91478 160.0 155.0 5.0 200 1.2 48.8 50.3 CASS 2 91479 165.0 170.0 5.0 6 0.6 50.3 51.8 CASS 2 91481 175.0 180.0 185.0 5.0 14 0.8 53.3 54.9 CASS 2 91483 185.0 190.0 5.0 310 4.8 57.9 59.4 CASS 2 91484 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91485 195.0 200.0 5.0 65 4.8 59.4 61.0 62.5 CASS 2 91484 200.0 205.0 5.0 1100 21.0 63.6 6	CASS 2	91473	135.0	140.0	5.0	720	22.0	41.1	42.7
CASS 2 91475 143.2 150.0 6.8 120 4.2 43.6 45.7 CASS 2 91476 150.0 155.0 5.0 120 2.2 47.2 48.8 CASS 2 91477 155.0 160.0 5.0 400 2.2 47.2 48.8 CASS 2 91479 165.0 170.0 5.0 6 0.6 50.3 51.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 175.0 180.0 5.0 14 0.8 53.3 54.9 CASS 2 91481 175.0 180.0 5.0 14 0.8 57.9 59.4 CASS 2 91481 180.0 195.0 5.0 16 2.0 61.0 62.5 CASS 2 91485 190.0 205.0 5.0 16 2.0 61.0 62.5 CASS 2 91482 206.0 20.0 5.0 42 65.5 67.1 CASS 2 91492	CASS 2	91474	140.0	143.2	3.2	2600	120.0	42.7	43.6
CASS 2 91476 150.0 155.0 5.0 120 2.2 45.7 47.2 CASS 2 91477 155.0 160.0 5.0 40 2.2 47.2 48.8 CASS 2 91478 166.0 165.0 5.0 20 1.2 48.8 50.3 CASS 2 91479 165.0 170.0 5.0 6 0.6 50.3 51.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 175.0 180.0 5.0 140 48.8 57.9 59.4 CASS 2 91485 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91485 190.0 200.0 5.0 65 4.8 59.4 61.0 62.5 CASS 2 91486 200.0 205.0 5.0 16 64.2 65.5 CASS 2 91488 201.0 20.0 5.0 100 20.6 65.6 67.1 CASS 2	CASS 2	91475	143. 2	150.0	6.8	120	4.2	43.6	45.7
CASS 2 91477 155.0 160.0 5.0 40 2.2 47.2 48.8 CASS 2 91478 160.0 165.0 5.0 200 1.2 44.8 50.3 CASS 2 91479 165.0 170.0 5.0 6 6.6 65.3 51.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 175.0 180.0 5.0 460 4.4 54.9 56.4 CASS 2 91482 186.0 190.0 5.0 250 1.6 56.4 57.9 CASS 2 91484 190.0 195.0 5.0 10 4.8 57.9 59.4 CASS 2 91485 195.0 200.0 5.0 65 4.8 57.9 59.4 CASS 2 91487 205.0 200.0 5.0 16 2.0 61.0 62.5 CASS 2 91489 210.8 215.0 4.2 36 1.2 64.2 65.5 67.1	CASS 2	91476	150.0	155.0	5.0	120	2.2	45.7	47.2
CASS 2 91478 160.0 165.0 5.0 200 1.2 48.8 50.3 CASS 2 91479 165.0 170.0 5.0 6 0.6 50.3 51.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 177.0 180.0 50.0 14 0.8 53.3 54.9 CASS 2 91482 180.0 185.0 5.0 460 4.4 54.9 56.4 CASS 2 91485 190.0 50.0 250.0 1.6 56.4 57.9 CASS 2 91486 200.0 205.0 5.0 16 2.0 61.0 62.5 CASS 2 91486 200.0 205.0 5.0 16 2.0 65.6 67.1 CASS 2 91487 206.0 220.0 5.0 48 2.0 65.5 67.1 CASS 2 91489 210.0 225.0 5.0 100 3.0 67.1 68.6 CASS 2 91489 <td>CASS 2</td> <td>91477</td> <td>155.0</td> <td>160.0</td> <td>5.0</td> <td>40</td> <td>2.2</td> <td>47.2</td> <td>48.8</td>	CASS 2	91477	155.0	160.0	5.0	40	2.2	47.2	48.8
CASS 2 91479 165.0 170.0 5.0 6 0.6 50.3 51.8 CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 CASS 2 91481 175.0 180.0 5.0 460 4.4 54.9 56.4 CASS 2 91483 185.0 190.0 5.0 250 1.6 56.4 57.9 CASS 2 91484 190.0 195.0 5.0 310 4.8 57.9 56.4 CASS 2 91486 200.0 205.0 5.0 16 2.0 61.0 62.5 CASS 2 91486 208.0 205.0 5.0 16 2.0 65.6 64.2 CASS 2 91489 210.8 210.8 3.8 46 2.2 65.5 67.1 CASS 2 91489 210.8 210.0 5.0 48 2.0 65.5 67.1 CASS 2 91490 215.0 220.0 5.0 370 2.0 68.6 70.1 71.6	CASS 2	91478	160.0	165.0	5.0	200	1.2	48.8	50.3
CASS 2 91480 170.0 175.0 5.0 7 1.4 51.8 53.3 54.9 CASS 2 91481 175.0 180.0 5.0 146 0.8 53.3 54.9 CASS 2 91482 180.0 185.0 5.0 456 4.4 57.9 56.4 CASS 2 91484 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91485 195.0 200.0 5.0 65 4.8 59.4 61.0 62.5 CASS 2 91486 200.0 205.0 5.0 16 2.0 61.0 62.5 CASS 2 91487 205.0 208.8 3.8 46 2.0 63.6 64.2 CASS 2 91490 215.0 20.0 5.0 420 30.0 67.1 66.6 71.1 CASS 2 91491 220.0 225.0 5.0 1200 30.0 67.1 66.6 71.1 CASS 2 91493 230.0 235.0 5.0 160 9.2 <td>CASS 2</td> <td>91479</td> <td>165.0</td> <td>170.0</td> <td>5.0</td> <td>6</td> <td>0.6</td> <td>50.3</td> <td>51.8</td>	CASS 2	91479	165.0	170.0	5.0	6	0.6	50.3	51.8
CASS 2 91481 175.0 180.0 5.0 14 0.8 53.3 54.9 CASS 2 91482 180.0 185.0 5.0 460 4.4 54.9 56.4 CASS 2 91483 185.0 190.0 5.0 250 1.6 56.4 57.9 59.4 CASS 2 91484 190.0 195.0 5.0 65 4.8 59.4 61.0 62.5 CASS 2 91486 200.0 205.0 5.0 66 2.0 61.0 62.5 CASS 2 91487 205.0 208.8 3.8 46 2.2 62.5 63.6 CASS 2 91489 210.8 215.0 4.2 36 1.2 64.2 65.5 CASS 2 91490 215.0 220.0 5.0 1200 3.0 67.1 68.6 70.1 CASS 2 91491 220.0 230.0 5.0 370 2.0 68.6 70.1 CASS 2 91494 235.0 240.0 5.0 160 92.7 71.6 <td>CASS 2</td> <td>91480</td> <td>170.0</td> <td>175.0</td> <td>5.0</td> <td>7</td> <td>1.4</td> <td>51.8</td> <td>53.3</td>	CASS 2	91480	170.0	175.0	5.0	7	1.4	51.8	53.3
CASS 2 91482 180.0 185.0 5.0 460 4.4 54.9 56.4 CASS 2 91483 185.0 190.0 5.0 250 1.6 56.4 57.9 CASS 2 91485 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91485 195.0 200.0 5.0 65 4.8 59.4 61.0 CASS 2 91486 200.0 205.0 5.0 16 2.0 61.0 62.5 CASS 2 91488 208.8 210.8 2.0 1100 21.0 63.6 64.2 CASS 2 91489 210.8 215.0 4.2 36 1.2 64.2 65.5 CASS 2 91491 220.0 225.0 5.0 1200 3.0 67.1 68.6 CASS 2 91492 225.0 230.0 235.0 5.0 160 9.2 71.6 73.1 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1	CASS 2	91481	175.0	180.0	5.0	14	0.8	53.3	54.9
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CASS 2	91482	180.0	185.0	5.0	460	4.4	54.9	56.4
CASS 2 91484 190.0 195.0 5.0 310 4.8 57.9 59.4 CASS 2 91485 195.0 200.0 5.0 65 4.8 59.4 61.0 CASS 2 91486 200.0 206.0 5.0 16 2.0 61.0 62.5 CASS 2 91486 200.0 208.8 3.8 46 2.2 62.5 63.6 CASS 2 91489 210.8 215.0 4.2 36 1.2 64.2 65.5 CASS 2 91490 210.0 25.0 5.0 1200 3.0 67.1 68.6 CASS 2 91491 220.0 225.0 5.0 90 2.2 70.1 71.6 CASS 2 91492 225.0 230.0 5.0 90 2.2 73.1 74.7 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91494 235.0 260.0 5.0 16 1.2 76.2 77.7 CASS 2	CASS 2	91483	185.0	190.0	5.0	250	1.6	56.4	57.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CASS 2	91484	190.0	195.0	5.0	310	4.8	57.9	59.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CASS 2	91485	195.0	200.0	5.0	65	4.8	59.4	61.0
CASS 2 91487 205.0 208.8 3.8 46 2.2 62.5 63.6 CASS 2 91488 208.8 210.8 2.0 1100 21.0 63.6 64.2 CASS 2 91489 210.8 215.0 4.2 36 1.2 64.2 65.5 CASS 2 91490 220.0 225.0 5.0 1200 3.0 67.1 68.6 CASS 2 91491 220.0 225.0 5.0 90 2.2 70.1 71.6 CASS 2 91492 225.0 230.0 5.0 90 2.2 70.1 71.6 CASS 2 91493 230.0 245.0 5.0 50 92.2 71.6 73.1 CASS 2 91495 240.0 245.0 5.0 50 14 0.6 74.7 76.2 CASS 2 91496 245.0 250.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8	CASS 2	91486	200.0	205.0	5.0	16	2.0	61.0	62.5
CASS 2 91488 208.8 210.8 210 1100 21.0 63.6 64.2 CASS 2 91499 210.8 215.0 4.2 36 1.2 64.2 65.5 CASS 2 91490 215.0 220.0 5.0 48 2.0 65.5 67.1 CASS 2 91491 225.0 230.0 5.0 370 2.0 68.6 70.1 CASS 2 91492 225.0 230.0 5.0 90 2.2 70.1 71.6 CASS 2 91493 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91496 245.0 250.0 5.0 16 1.2 76.2 77.7 CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91498 250.0 265.0 272.3 7.3 12 1.6 80.8 83.0 <tr< td=""><td>CASS 2</td><td>91487</td><td>205.0</td><td>208.8</td><td>3.8</td><td>46</td><td>2.2</td><td>62.5</td><td>63.6</td></tr<>	CASS 2	91487	205.0	208.8	3.8	46	2.2	62.5	63.6
CASS 2 91489 210.8 215.0 4.2 36 1.2 64.2 65.5 CASS 2 91490 215.0 220.0 5.0 48 2.0 65.5 67.1 CASS 2 91491 220.0 225.0 5.0 1200 3.0 67.1 68.6 CASS 2 91492 225.0 230.0 5.0 90 2.2 70.1 71.6 CASS 2 91493 230.0 235.0 5.0 90 2.2 70.1 71.6 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91495 240.0 245.0 5.0 16 1.2 76.2 77.7 CASS 2 91496 245.0 250.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97151 0.0 6.0 1800 7.4 0.0 1.8 3.0 CASS 3	CASS 2	91488	208.8	210.8	2.0	1100	21.0	63.6	64.2
CASS 2 91490 215.0 220.0 5.0 48 2.0 65.5 67.1 CASS 2 91491 220.0 225.0 5.0 1200 3.0 67.1 68.6 CASS 2 91492 225.0 230.0 5.0 370 2.0 68.6 70.1 CASS 2 91492 225.0 230.0 5.0 90 2.2 70.1 71.6 CASS 2 91494 235.0 240.0 5.0 50 92.2 73.1 74.7 CASS 2 91496 245.0 250.0 5.0 160 9.2 71.6 73.1 CASS 2 91496 245.0 250.0 5.0 14 0.6 74.7 76.2 CASS 2 91497 250.0 265.0 5.0 16 1.2 76.2 77.7 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97151 0.0 6.0 1.8 3.0 CASS 3 3.0 CASS 3 3.0 4.6	CASS 2	91489	210.8	215.0	4.2	36	12	64.2	65.5
CASS 2 91491 220.0 225.0 5.0 1200 3.0 67.1 68.6 CASS 2 91492 225.0 230.0 5.0 370 2.0 68.6 70.1 CASS 2 91493 230.0 235.0 5.0 90 2.2 70.1 71.6 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91495 240.0 245.0 5.0 50 2.2 73.1 74.7 CASS 2 91496 245.0 250.0 5.0 16 1.2 76.2 77.7 CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91498 255.0 260.0 5.0 8 2.0 79.2 80.8 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97151 0.0 6.0 1800 7.4 0.0 1.8 3.0 CASS 3	CASS 2	91490	215.0	220.0	5.0	48	2.0	65.5	67.1
CASS 2 91492 225.0 230.0 5.0 370 2.0 68.6 70.1 CASS 2 91493 230.0 235.0 5.0 90 2.2 70.1 71.6 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91495 240.0 245.0 5.0 50 14 0.6 74.7 76.2 CASS 2 91496 245.0 250.0 5.0 16 1.2 76.2 77.7 CASS 2 91497 250.0 265.0 5.0 16 1.2 76.2 77.7 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97155 20.0 25.0 5.0 4400 16.0 3.0 4.6 CA	CASS 2	91491	220.0	225.0	5.0	1200	3.0	67.1	68.6
CASS 2 91493 230.0 235.0 5.0 90 2.2 70.1 71.6 CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91495 240.0 245.0 5.0 50 2.2 73.1 74.7 CASS 2 91496 245.0 250.0 5.0 14 0.6 74.7 76.2 CASS 2 91497 250.0 255.0 5.0 16 1.2 76.2 77.7 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3	CASS 2	91492	225.0	230.0	5.0	370	20	68.6	70.1
CASS 2 91494 235.0 240.0 5.0 160 9.2 71.6 73.1 CASS 2 91495 240.0 245.0 5.0 50 2.2 73.1 74.7 CASS 2 91496 245.0 250.0 5.0 14 0.6 74.7 76.2 CASS 2 91496 245.0 250.0 5.0 16 1.2 76.2 77.7 CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97150 266.0 272.3 7.3 12 1.6 80.8 83.0 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 490 3.2 6.1 7.6 CASS 3 9	CASS 2	91493	230.0	235.0	5.0	90	22	70.1	71.6
CASS 2 91495 240.0 245.0 5.0 50 2.2 73.1 74.7 CASS 2 91496 245.0 250.0 5.0 14 0.6 74.7 76.2 CASS 2 91497 250.0 255.0 5.0 16 1.2 76.2 77.7 CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 3 97151 0.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0	CASS 2	91494	235.0	240.0	5.0	160	9.2	71.6	73.1
CASS 2 91496 245.0 250.0 5.0 14 0.6 74.7 76.2 CASS 2 91497 250.0 255.0 5.0 16 1.2 76.2 77.7 CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 2 91500 265.0 272.3 7.3 12 1.6 80.8 83.0 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157<	CASS 2	91495	240.0	245.0	5.0	50	2.2	73.1	74 7
CASS 2 91497 250.0 255.0 5.0 16 1.2 76.2 77.7 CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 2 91500 265.0 272.3 7.3 12 1.6 80.8 83.0 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97157 30.0 35.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 110 0.6 12.2 13.7 CASS 3 97158	CASS 2	91496	245.0	250.0	5.0	14	0.6	74 7	76.2
CASS 2 91498 255.0 260.0 5.0 16 5.6 77.7 79.2 CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 2 91500 265.0 272.3 7.3 12 1.6 80.8 83.0 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9490 3.2 6.1 7.6 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97158 35.0 40.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 <td>CASS 2</td> <td>91497</td> <td>250.0</td> <td>255.0</td> <td>5.0</td> <td>16</td> <td>12</td> <td>76.2</td> <td>77 7</td>	CASS 2	91497	250.0	255.0	5.0	16	12	76.2	77 7
CASS 2 91499 260.0 265.0 5.0 8 2.0 79.2 80.8 CASS 2 91500 265.0 272.3 7.3 12 1.6 80.8 83.0 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 310 1.6 12.2 13.7 CASS 3 97160	CASS 2	91498	255.0	260.0	5.0	16	5.6	77.7	79.2
CASS 2 91500 265.0 272.3 7.3 12 1.6 80.8 83.0 CASS 3 97151 0.0 6.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161	CASS 2	91499	260.0	265.0	5.0	8	2.0	79.2	80.8
CASS 3 97151 0.0 6.0 1800 7.4 0.0 1.8 CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 310 1.6 12.2 13.7 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 <td>CASS 2</td> <td>91500</td> <td>265.0</td> <td>272.3</td> <td>7.3</td> <td>12</td> <td>1.6</td> <td>80.8</td> <td>83.0</td>	CASS 2	91500	265.0	272.3	7.3	12	1.6	80.8	83.0
CASS 3 97152 6.0 10.0 4.0 15200 80.0 1.8 3.0 CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 10 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 5.0 100 1.2 16.8 18.3 CASS 3 97162 55.0 <td>CASS 3</td> <td>97151</td> <td>0.0</td> <td>6.0</td> <td>6.0</td> <td>1800</td> <td>7.4</td> <td>0.0</td> <td>1.8</td>	CASS 3	97151	0.0	6.0	6.0	1800	7.4	0.0	1.8
CASS 3 97153 10.0 15.0 5.0 8400 16.0 3.0 4.6 CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97161 50.0 65.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163<	CASS 3	97152	6.0	10.0	4.0	15200	80.0	1.8	3.0
CASS 3 97154 15.0 20.0 5.0 9400 13.0 4.6 6.1 CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 1100 1.2 16.8 18.3 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 <td>CASS 3</td> <td>97153</td> <td>10.0</td> <td>15.0</td> <td>5.0</td> <td>8400</td> <td>16.0</td> <td>3.0</td> <td>4.6</td>	CASS 3	97153	10.0	15.0	5.0	8400	16.0	3.0	4.6
CASS 3 97155 20.0 25.0 5.0 490 3.2 6.1 7.6 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 130 1.0 19.8 21.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 <td>CASS 3</td> <td>97154</td> <td>15.0</td> <td>20.0</td> <td>5.0</td> <td>9400</td> <td>13.0</td> <td>4.6</td> <td>6.1</td>	CASS 3	97154	15.0	20.0	5.0	9400	13.0	4.6	6.1
CASS 3 97156 25.0 30.0 5.0 110 0.6 7.6 9.1 CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 1100 1.2 16.8 18.3 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 971	CASS 3	97155	20.0	25.0	5.0	490	3.2	61	7.6
CASS 3 97157 30.0 35.0 5.0 40 -0.2 9.1 10.7 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97	CASS 3	97156	25.0	30.0	5.0	110	0.6	76	91
CASS 3 97158 35.0 40.0 5.0 50 0.4 10.7 12.2 CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3	CASS 3	97157	30.0	35.0	5.0	40	-0.2	91	10.7
CASS 3 97159 40.0 45.0 5.0 310 1.6 12.2 13.7 CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3	CASS 3	97158	35.0	40.0	5.0	50	0.4	10.7	12.2
CASS 3 97160 45.0 50.0 5.0 140 -0.2 13.7 15.2 CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3 CASS 4 97199 4.4 11.5 7.1 80 2.6 1.3 2.5	CASS 3	97159	40.0	45.0	5.0	310	16	12.2	13.7
CASS 3 97161 50.0 55.0 5.0 120 -0.2 15.2 16.8 CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3	CASS 3	97160	45.0	50.0	5.0	140	-0.2	13.7	15.2
CASS 3 97162 55.0 60.0 5.0 1100 1.2 16.8 18.3 CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3	CASS 3	97161	50.0	55.0	5.0	120	-0.2	15.2	16.8
CASS 3 97163 60.0 65.0 5.0 4900 5.8 18.3 19.8 CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3	CASS 3	97162	55.0	60.0	5.0	1100	12	16.8	18.3
CASS 3 97164 65.0 70.0 5.0 130 1.0 19.8 21.3 CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3 CASS 4 97199 4.4 11.5 7.1 80 2.6 1.3 2.5	CASS 3	97163	60.0	65.0	5.0	4900	5.8	18.3	19.8
CASS 3 97165 70.0 75.0 5.0 40 -0.2 21.3 22.9 CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3 CASS 4 97199 4.4 11.5 7.1 80 2.6 1.3	CASS 3	97164	65.0	70.0	5.0	130	1.0	19.8	21.3
CASS 4 97198 0.0 4.4 4.4 600.0 80.0 0.0 1.3 CASS 4 97199 4.4 115 7.1 80 2.6 1.2 2.5	CASS 3	97165	70.0	75.0	5.0	40	-0.2	21 3	21.0
CASS 4 07100 44 115 71 80 26 12 25	CASS 4	97198	0.0	4.4	<u>4</u> 4	600	2.2 80 0	21.0	1 2
MANNET	CASS 4	97199	44	11.5	7 1	80	2.6	1 3	2.5
CASS 4 97200 11 5 22 7 11 2 70 40 35 60	CASS 4	97200	11 5	22.7	11.2	70	2.0	1.5	5.5
CASS 4 97201 22.7 29.0 6.3 14 2.2 60 9.9	CASS 4	97201	22.7	20.0	63	14	ט.ד סיס	0.0	0.9 Q Q
CASS 4 97202 29.0 34.0 5.0 380 6.4 8.8 10.4	CASS 4	97202	29.0	34.0	5.0	380	£.Z 6.4	0.9 8.8	10.0

. ж

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 4	97203	34.0	39.0	5.0	250	2.6	10.4	11.9
CASS 4	97204	39.0	45.4	6.4	150	2.0	11.9	13.8
CASS 4	97205	45.4	50.0	4.6	3000	11.0	13.8	15.2
CASS 4	97206	50.0	52.7	2.7	1550	14.0	15.2	16.1
CASS 4	97207	52.7	58.0	5.3	28	1.6	16.1	17.7
CASS 4	97208	58.0	64.0	6.0	38	1.6	17.7	19.5
CASS 4	97209	64.0	70.0	6.0	78	1.0	19.5	21.3
CASS 4	97210	70.0	71.6	1.6	-2	0.6	21.3	21.8
CASS 4	97211	71.6	75.0	3.4	18	1.0	21.8	22.9
CASS 4	97212	75.0	81.1	6.1	6	2.4	22.9	24.7
CASS 4	97213	81.1	84.0	2.9	270	7.0	24.7	25.6
CASS 4	97214	84.0	88.3	4.3	190	7.8	25.6	26.9
CASS 4	97215	88.3	92.6	4.3	15000	100.0	26.9	28.2
CASS 4	97216	92.6	96.7	4.1	320	8.8	28.2	29.5
CASS 4	97217	96.7	99.3	2.6	4900	20.0	29.5	30.3
CASS 4	97304	99.3	105.0	5.7	450	3.6	30.3	32.0
CASS 4	97305	105.0	110.0	5.0	11	1.0	32.0	33.5
CASS 4	97306	110.0	115.0	5.0	20	1.0	33.5	35.1
CASS 4	97307	115.0	120.0	5.0	21	0.8	35.1	36.6
CASS 5	97308	45.5	50.0	4.5	4.0	0.8	13 0	15.2
CASS 5	97309	50.0	55.0	5.0	46	0.0	15.0	16.2
CASS 5	97310	55.0	60.0	5.0	150	5.8	16.8	18.3
CASS 5	97311	60.0	65.0	5.0	1100	6.2	18.3	10.0
CASS 5	97312	65.0	70.0	5.0	32	0.2	10.0	21.2
CASS 5	97313	70.0	75.0	5.0	35	0.0	21.3	21.3
CASS 5	97314	75.0	80.0	5.0	15	0.6	21.5	22.9
CASS 5	97315	80.0	85.0	5.0	10	0.0	22.3	24.4
CASS 5	97316	85.0	90.0	5.0	1/0	0.0	24.4	20.9
CASS 5	07317	90.0	95.0	5.0	250	0.4	20.8	27.4
CASS 5	97318	95.0	100.0	5.0	200	0.2	27.4	29.0
CASS 5	07310	100.0	105.0	5.0	-10	-0.2	29.0	30.5
CASS 5	97320	105.0	110.0	5.0	10	0.0	30.5	32.0
CASS 5	07321	110.0	115.0	5.0	40	1.0	32.0	33.5
CASS 5	07322	115.0	120.0	5.0	450	0.4	33.D 25.4	30.1
CASS 5	07322	120.0	120.0	5.0	10	0.0	30.1	30.0
CASS 5	97323	120.0	120.0	5.0	2/0	0.0	30.0	30.1
CASS 5	07325	120.0	125.0	5.0	240	0.0	30.1	39.0
CASS 5	97325	135.0	130.0	5.0	120	0.0	39.0	41.1
	97320	130.0	139.5	4.0	240	1.0	41.1	42.5
	97219	140.6	140.0	1.1	240 6200	1.2	42.5	42.9
	07221	140.0	145.0	4.4	0200	20.0	42.9	44.2
	97221	140.0	101.2	0.2	2000	5.0	44.2	46.1
CASS 5	97222	101.2	100.0	4.0	210	2.4	46.1	47.5
	97223	100.0	101.4	5.4	1000	2.4	47.5	49.2
CASS 5	97224	101.4	103.0	۷.۷	1200	40.0	49.2	49.9
	97220	103.0	168.0	4.4	88	3.2	49.9	51.2
CA33 3	97226	108.0	1/3.0	5.0	1200	6.8	51.2	52.7
CASS 3	9/22/	1/3.0	1/8.0	5.0	90	4.4	52.7	54.3
CASS 3	97228	1/8.0	183.7	5.7	1/0	14.0	54.3	56.0
CASS 3	97229	183.7	186.7	3.0	1800	4.2	56.0	56.9
CASS 5	97230	186.7	192.0	5.3	190	2.8	56.9	58.5
CASS 5	97231	192.0	197. 2	5.2	260	3.0	58.5	60.1

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ	
CASS 5	97232	197.2	202.0	4.8	1500	11.0	60.1	61.6	
CASS 5	97233	202.0	207.1	5.1	1900	4.0	61.6	63.1	
CASS 5	97234	207.1	212.0	4.9	2300	13.0	63.1	64.6	
CASS 5	97235	212.0	217.5	5.5	300	5.8	64.6	66.3	
CASS 5	97236	217.5	219.7	2.2	660	34.0	66.3	67.0	
CASS 5	97237	219.7	224.7	5.0	620	16.0	67.0	68.5	
CASS 5	97238	224.7	228.7	4.0	15000	6.6	68.5	69.7	
CASS 5	97239	228.7	234.0	5.3	400	2.8	69.7	71.3	
CASS 5	97240	234.0	239.0	5.0	110	3.6	71 3	72.8	
CASS 5	97241	239.0	244.0	5.0	380	6.4	72.8	74.0	
CASS 5	97242	244.0	247 4	34	160	32	74.0 74.4	75.4	
CASS 5	97243	247.4	253.0	5.6	3000	30.0	75.4	73.4	
CASS 5	97244	253.0	258.0	5.0	1900	18.0	73.4	78.6	
CASS 5	97245	258.0	263.0	5.0	3000	16.0	79.6	20.0	
CASS 5	97246	263.0	268.0	5.0	4600	2/ 0	20.0	00.Z Q1 7	
CASS 5	97240	268.0	200.0 272 N	J.0 ⊿ ∩	7500	24.U 20.0	0U.Z	01.7 92.0	
CASS 5	97249	200.0	272.0	0. 7 6.0	1600	15.0	01./ 02.0	02.9 917	
CASS 5	07240	272.0	210.0 282 A	0.0 E 0	1000	10.0	02.9	04./	
CASS 5	07250	210.0	200.0 207 0	1.0	2100	17.0	04./	00.3	
CASS 5	07251	200.U 207 0	201.9	4.9 2 G	3400	0.2	00.3	σ <i>Γ</i> ./	
CASS 5	07250	201.9	280.0	2.0	0.001	4.0	ŏ/./	88.5	
	8120Z	280.0	293.0	2.0	2400	11.0	88.5	89.3	
CA00 5	91200	293.0	301.2	ö.2	040	2.8	89.3	91.8	
CASS 3	91204	301.Z	300.0	4.8	0400	18.0	91.8	93.3	
	97205	300.0	311.0	5.0	950	14.0	93.3	94.8	
CASS 5	97256	311.0	316.0	5.0	2700	5.4	94.8	96.3	
CASS 5	97257	316.0	321.5	5.5	1900	60.0	96.3	98.0	
CASS 5	97258	321.5	326.0	4.5	680	9.4	98.0	99.4	
CASS 5	97259	326.0	331.0	5.0	880	9.2	99.4	100.9	
CASS 5	97260	331.0	336.0	5.0	740	18.0	100.9	102.4	
CASS 5	97261	336.0	341.0	5.0	2200	20.0	102.4	103.9	
CASS 5	97262	341.0	346.0	5.0	140	1.4	103.9	105.5	
CASS 5	97263	346.0	350.0	4.0	340	3.6	105.5	106.7	
CASS 6	97327	37.0	42.0	5.0	380.0	1.2	11.3	12.8	
CASS 6	97328	42.0	47.0	5.0	450	0.4	12.8	14.3	
CASS 6	97329	47.0	52.0	5.0	130	1.2	14.3	15.8	
CASS 6	97330	52.0	57.0	5.0	80	1.2	15.8	17.4	
CASS 6	97331	57.0	62.0	5.0	490	1.4	17.4	18.9	
CASS 6	97332	62.0	67.0	5.0	240	2.0	18.9	20.4	
CASS 6	97333	67.0	72.0	5.0	225000	350.0	20.4	21.9	
CASS 6	97334	72.0	77.0	5.0	26000	45.0	21.9	23.5	
CASS 6	97335	77.0	82.0	5.0	4900	30.0	23.5	25.0	
CASS 6	97336	82.0	84.3	2.3	8600	30.0	25.0	25.7	
CASS 6	97337	84.3	89.0	4.7	640	3.0	25.7	27.1	
CASS 6	97338	89.0	92.0	3.0	5500	1.2	27.1	28.0	
CASS 6	97264	92.0	98.0	6.0	2300	4.0	28.0	29.9	
CASS 6	97265	98.0	99.2	12	650	4.3	29.0	30.2	
CASS 6	97339	99.2	101 1	1.9	2600	10	30.2	30.2	
CASS 6	97265	101 1	103.2	21	650.0	1.0	20.2 20.2	21 5	
CASS 6	97366	103.2	108.2	4.1	3700	-τ.2 15 Ω	21 5	220	
CASS 6	97367	108.2	112.0	0 5 0	2500	10.0 6 A	22.0	32.3	
CASS 6	07369	112 0	110.0	5.0	4100	0.0	32.9 34 4	34.4	
	91300	113.0	110.0	0.C	1100	1.0	34.4	30.0	

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 6	97369	118.0	120.3	2.3	620	3.0	36.0	36.7
CASS 6	97340	120.3	122.3	2.0	5600	30.0	36.7	37.3
CASS 6	97341	122.3	127.0	4.7	1900	1.8	37.3	38.7
CASS 6	97342	127.0	130.5	3.5	340	2.4	38.7	39.8
CASS 6	97343	130.5	135.0	4.5	2500	11.0	39.8	41.1
CASS 6	97344	135.0	140.0	5.0	1600	2.2	41.1	42.7
CASS 6	97345	140.0	144.5	4.5	2500	2.8	42.7	44.0
CASS 6	97346	144.5	149.0	4.5	5600	8.8	44.0	45.4
CASS 6	97347	149.0	152.0	3.0	960	3.4	45.4	46.3
CASS 6	97348	152.0	157.0	5.0	4500	8.0	46.3	47.9
CASS 6	97349	157.0	162.3	5.3	2000	14.0	47.9	49.5
CASS 6	97350	162.3	166.6	4.3	130	19.0	49.5	50.8
CASS 6	97351	166.6	170.0	3.4	800	2.4	50.8	51.8
CASS 6	97352	170.0	175.0	5.0	550	4.8	51.8	53.3
CASS 6	97353	175.0	179.0	4.0	350	60.0	53.3	54.6
CASS 6	97354	179.0	185.0	6.0	280	2.6	54.6	56.4
CASS 6	97355	185.0	189.0	4.0	2600	18.0	56.4	57.6
CASS 6	97356	189.0	193.0	4.0	2150	60.0	57.6	58.8
CASS 6	97357	193.0	198.0	5.0	50	8.8	58.8	60.3
CASS 6	97358	198.0	204.6	6.6	220	3.0	60.3	62.4
CASS 7	97166	0.0	97	9.7	800.0	2.6	00.5	3.0
CASS 7	97167	9.7	15.0	5.3	2900	2.0	2.0	3.0
CASS 7	97168	15.0	20.0	5.0	4100	20.0	3.0	4.0
CASS 7	97169	20.0	25.0	5.0	2000	15.0	4.0	7.6
CASS 7	97170	25.0	30.0	5.0	2000	5.0	0.1	7.0
CASS 7	97171	30.0	35.0	5.0	3600	10.0	7.0	9.1
CASS 7	97172	35.0	38.1	3.0	5200	10.0	9.1	10.7
CASS 7	97172	38.1	43.0	10	500	12.0	10.7	11.0
CASS 7	97174	43.0	43.0	4.5	2500	3.0	11.0	13.1
CASS 7	97175	47.7	52.0	4.7	2300	5.4	14.5	14.0
CASS 7	97176	52.0	57.0	4.5	2300	34.0	14.0	17.0
CASS 7	97177	57.0	62.0	5.0	1300	24.0	10.0	17.4
CASS 7	97178	62.0	67.0	5.0	1400	9.0	17.4	10.9
CASS 7	97170	67.0	72.5	5.0	3100	10.0	10.9	20.4
CASS 7	07180	72.5	72.5	0.0	190	0.2	20.4	22.1
CASS 7	07191	72.5	91.0	4.5	100	2.0	22.1	23.5
CASS 7	97101	91.0	92.6	4.2	1000	10.0	23.5	24.7
	07192	01.2	00.0	Z.4 E A	420	10.0	24.7	25.5
CASS 7	97103	80.0	09.0	0.4	420	1.2	25.5	27.1
CASS 7	97104	09.0	95.0	0.0	2200	1.8	27.1	29.0
	97100	95.0	100.0	5.0	2200	15.0	29.0	30.5
	97100	100.0	105.0	5.0	2000	12.0	30.5	32.0
CASS /	9/18/	105.0	110.0	5.0	630	4.4	32.0	33.5
CASS /	97188	110.0	115.0	5.0	160	4.0	33.5	35.1
CASS /	97189	115.0	120.0	5.0	660	23.0	35.1	36.6
CASS /	97190	120.0	125.0	5.0	08	4.2	36.6	38.1
UASS /	9/191	125.0	130.0	5.0	360	17.0	38.1	39.6
UASS /	9/192	130.0	135.0	5.0	2600	6.2	39.6	41.1
UASS /	9/193	135.0	140.5	5.5	180	14.0	41.1	42.8
CASS /	9/194	140.5	144.5	4.0	37000	260.0	42.8	44.0
UASS /	97195	144.5	150.0	5.5	2600	34.0	44.0	45.7
CASS /	97196	150.0	155.0	5.0	320	15.0	45.7	47.2
Hole-ID	Sample #	From (ft)	<u>To (ft)</u>	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
---------	----------	--------------	----------------	------------------------	----------	-------------	--------------	-------
CASS 7	97197	155.0	160.0	5.0	300	48.0	47.2	48.8
CASS 7	97270	160.0	165.5	5.5	160	14.0	48.8	50.4
CASS 7	97271	165.5	168.4	2.9	570	16.0	50.4	51.3
CASS 7	97272	168.4	175.0	6.6	700	3.2	51.3	53.3
CASS 7	97273	175.0	180.0	5.0	190	1.6	53.3	54.9
CASS 7	97274	180.0	185.0	5.0	210	18.0	54.9	56.4
CASS 7	97275	185.0	190.0	5.0	140	2.4	56.4	57.9
CASS 7	97276	190.0	196.2	6.2	210	1.8	57.9	59.8
CASS 7	97277	196.2	201.0	4.8	1900	14.0	59.8	61.3
CASS 7	97278	201.0	206.1	5.1	1700	36.0	61.3	62.8
CASS 7	97279	206.1	212.4	6.3	240	2.2	62.8	64.7
CASS 7	97280	212.4	218.9	6.5	1050	60.0	64 7	66.7
CASS 7	97281	218.9	225.0	6.1	120	1.0	66.7	68.6
CASS 7	97282	225.0	230.0	5.0	120	1.2	68.6	70.1
CASS 7	97283	230.0	235.0	5.0	1250	12.0	70.1	71.6
CASS 7	97284	235.0	240.0	5.0	160	1.6	71.6	73.1
CASS 7	97285	240.0	245.0	5.0	540	1.4	73.1	74.7
CASS 7	97286	245.0	250.0	5.0	400	44	74.7	76.2
CASS 7	97287	250.0	255.0	5.0	1100	12.0	76.2	77.7
CASS 7	97288	255.0	260.0	5.0	60	7.8	77.7	79.2
CASS 7	97289	260.0	265.0	5.0	20	2.0	79.2	80.8
CASS 7	97290	265.0	274.3	9.3	20	1.6	80.8	83.6
CASS 7	97291	274.3	280.0	5.0	9	24	83.6	85.3
CASS 7	97292	280.0	285.0	50	34	2.4	85.3	86.0
CASS 7	97293	285.0	290.0	5.0	18	2.0	86.0	88.4
CASS 7	97294	290.0	295.0	5.0	13	2.2	88.4	80.4
CASS 7	97295	295.0	300.0	5.0	21	1 /	80.0	09.9
CASS 7	97296	300.0	305.0	5.0	8	1.4	09.9 01 /	91.4
CASS 7	97297	305.0	310.0	5.0	q	1.0	03.0	95.0
CASS 7	97298	310.0	315.0	5.0	4	2.0	90.0	94.0
CASS 7	97299	315.0	320.0	5.0	3	2.0	94.0	90.0
CASS 7	97300	320.0	325.0	5.0	5	1.0	90.0	97.5
CASS 7	97301	325.0	330.0	5.0	11	1.0	97.0	100 6
CASS 7	97302	330.0	335.0	5.0	13	11.0	100.6	100.0
CASS 7	97303	335.0	340.0	5.0	-2	12	102.0	102.1
CASS 8	400101	10.0	26.0	16.0	10733	7.1	3.0	7.0
CASS 8	400102	26.0	36.0	10.0	12884	1.1	7.0	11.0
CASS 8	400103	36.0	41.0	5.0	3702	1.0	11.0	12.5
CASS 8	400104	41.0	47.0	6.0	2949	4.4	12.5	12.0
CASS 8	400105	47.0	54.0	7.0	1120	20	14.3	14.5
CASS 8	400106	54.0	60.4	6.4	3536	2.3	14.5	10.0
CASS 8	400107	60.4	65.2	0. 4 4.8	5/27	2.4	10.0	10.4
CASS 8	400108	65.2	66.7	1.0	18/3	2.2	10.4	19.9
CASS 8	400100	66.7	71.0	1.5	0787	1.5	19.9	20.3
CASS 8	400109	71 0	7/1.0	4.J 2.0	1002	0.1	20.3	21.0
CASS 8	400110	7/ O	74.2	J.Z	1000	Z .1	21.0	22.0
CASS 8	400112	75.2	10.0 Q1 A	1.1	1000	1.0	22.0	23.0
CASS 8	400112	21 A	01.0 21 F	0.0	12400	1.0	23.0	24.9
CASS 8	400113	01.0 Q/ 5	04.0 QQ A	2.9	10400	0.3	24.9	25.8
CASS 8	400114	04.0 QQ /	00.4 00.0	J.9 0.9	000	1.3	20.8	20.9
CASS 8	400110	20.4 20 0	09.0	20.0	170	2.C	20.9	27.1
0.000		09.0	JZ.U	3.0	470	6.1	Z1.1	28.0

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 8	400117	92.0	96.5	4.5	5213	3.1	28.0	29.4
CASS 8	400118	96.5	98.0	1.5	68	1.3	29.4	29.9
CASS 8	400119	98.0	100.0	2.0	1106	4.7	29.9	30.5
CASS 8	400120	100.0	101.3	1.3	32	1.4	30.5	30.9
CASS 8	400121	101.3	103.6	2.3	2124	4.0	30.9	31.6
CASS 8	400122	103.6	105.5	1.9	672	0.6	31.6	32.2
CASS 8	400123	105.5	106.0	0.5	8912	1.0	32.2	32.3
CASS 8	400124	106.0	109.0	3.0	160	0.4	32.3	33.2
CASS 8	400125	109.0	114.0	5.0	330	0.6	33.2	34.7
CASS 8	400126	114.0	115.2	1.2	1079	1.7	34.7	35.1
CASS 8	400127	115.2	116.8	1.6	85	0.7	35.1	35.6
CASS 8	400128	116.8	118.0	1.2	1458	32	35.6	36.0
CASS 8	400129	118.0	120.0	2.0	429	12	36.0	36.6
CASS 8	400130	120.0	123.5	3.5	677	1.2	36.6	37.6
CASS 8	400131	123.5	126.8	3.3	3553	5.5	37.6	38.6
CASS 8	400132	126.8	130.0	32	2749	5.6	38.6	30.0
CASS 8	400133	130.0	131 7	17	2337	0.0 Q 4	30.0	40.1
CASS 8	400134	131 7	136.0	4.3	826	2.7	40.1	40.1
CASS 8	400135	136.0	139.0	3.0	4807	2.7	40.1	41.0
CASS 8	400136	139.0	142.7	3.7	3245	13.6	41.0	42.4
CASS 8	400137	142 7	148.0	53	2/3	10.0	42.4	43.3
CASS 8	400138	148.0	153.0	5.0	17	1.4	45.5	40.1
CASS 8	400139	153.0	156.0	3.0	4008	1.0	45.1	40.0
CASS 8	400140	156.0	160.0	4.0	70/	4.9	40.0	47.0
CASS 8	400140	160.0	161.4	-4.0 1 A	1861	39.7	47.0	40.0
CASS 8	400141	161.4	167.0	5.6	1028	1.5	40.0	49.2
CASS 8	400142	167.0	172.0	5.0	37	1.0	49.2	50.9
CASS 8	400140	172.0	172.0	5.0	18	1.7	50.9	52.4
CASS 8	400145	172.0	182.0	5.0	501	2.3	52.4	53.9
CASS 8	400146	182.0	185.0	3.0	302	3.0	55.9	50.5
CASS 8	400140	185.0	187.0	2.0	1/15	1.3	55.5	57.4
CASS 8	400148	187.0	107.0	2.0	8836	20.7	50.4	57.0
CASS 8	400140	190.0	190.0	1.0	/215	20.3	57.0	57.9
CASS 8	400149	190.0	200.0	4.0	2501	3.0	57.9	59.1
CASS 8	400150	200.0	200.0	0.0	2107	0.0	59.1	01.0
CASS 8	400151	200.0	200.0	5.5	9606	4.1 25.4	01.0	02.0
CASS 8	400152	200.0	211.0	17	765	0.0	02.0	04.3
CASS 8	400150	211.0	210.7		606	0.9	04.3	67.4
CASS 8	400154	210.7	221.0	0.0	2806	1.1	00.7	67.4
CASS 8	400155	221.0	220.2	4.2	2000	2.1	07.4	68.6
CASS 8	400150	220.2	229.0	4.0	525	0.1	00.0	69.9
CASS 8	400157	229.0	232.0	2.5	410	1.2	69.9 70 7	70.7
CASS 8	400150	232.0	230.0	4.0	204	3.9	70.7	71.9
	400155	230.0	240.0	4.0	4443	4.2	71.9	73.1
CA33 0	400100	240.0	244.0	4.0	1000	4.8	73.1	74.4
CASS 0	400101	244.0	240.0	4.0	1029	21.3	74.4	75.8
0.000	400102	240.0	204.0	J.Z	4700	3.8	/5.8	//.4
CA96 8	400103	204.0	209.0	0.U	1793	3.0	71.4	78.9
CA95 0	400104	209.0	204.0	0.5	304	3.9	78.9	80.6
0 000 0	400166	204.0	200.0	3,5	299	3.9	80.6	81.7
0493 0	400100	200.0	212.0	4.0	2033	9.5	81.7	82.9
07000	400107	Z1Z.0	210.0	3.0	221	1.1	82.9	83.8

CASS 8 400168 275.0 280.0 5.0 344 9.8 83.8 85.3 CASS 8 400169 280.0 285.0 5.0 223 6.2 85.3 86.9 CASS 8 400170 285.0 290.0 5.0 291 6.0 86.9 88.4 CASS 8 400171 290.0 295.0 5.0 49 0.9 88.4 89.9 CASS 8 400172 295.0 300.0 5.0 18 1.2 89.9 91.4 CASS 8 400174 302.0 306.5 4.5 106 2.9 92.0 93.4 CASS 8 400175 306.5 312.0 5.5 225 8.1 93.4 95.1 CASS 8 400176 312.0 316.0 4.0 7443 1.4 95.1 96.3 CASS 8 400177 316.0 319.5 3.5 77 1.1 96.3 97.4 CASS 8 400180 328.0 330.5 2.5 439 3.5 100.0 100.7
CASS 8400169280.0285.05.02236.285.388.9CASS 8400170285.0290.05.02916.086.988.4CASS 8400171290.0295.05.0490.988.489.9CASS 8400172295.0300.05.0181.289.991.4CASS 8400173300.0302.02.01931.991.492.0CASS 8400174302.0306.54.51062.992.093.4CASS 8400176312.0316.04.074431.495.196.3CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400180328.0335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2
CASS 8400170285.0290.05.02916.086.988.4CASS 8400171290.0295.05.0490.988.489.9CASS 8400172295.0300.05.0181.289.991.4CASS 8400173300.0302.02.01931.991.492.0CASS 8400174302.0306.54.51062.992.093.4CASS 8400176312.0316.04.074431.495.196.3CASS 8400176312.0316.04.074431.495.196.3CASS 8400176312.0316.04.074431.495.196.3CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.561
CASS 8400171290.0295.05.0490.988.489.9CASS 8400172295.0300.05.0181.289.991.4CASS 8400173300.0302.02.01931.991.492.0CASS 8400174302.0306.54.51062.992.093.4CASS 8400175306.5312.05.52258.193.495.1CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.7102.1CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2
CASS 8400172295.0300.05.0181.289.991.4CASS 8400173300.0302.02.01931.991.492.0CASS 8400174302.0306.54.51062.992.093.4CASS 8400175306.5312.05.52258.193.495.1CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.561
CASS 8400173300.0302.02.01931.991.492.0CASS 8400174302.0306.54.51062.992.093.4CASS 8400175306.5312.05.52258.193.495.1CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a400186352.5358.05.561 <t< td=""></t<>
CASS 8400174302.0306.54.51062.992.093.4CASS 8400175306.5312.05.52258.193.495.1CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.0180.52.74.3CASS 9a4001889.014.05.0180.52.74.3CASS 9a40019018.022.04.060.75.56.7CASS 9a40019018.022.04.060.75.5
CASS 8400175306.5312.05.52258.193.495.1CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.01410.81.22.7CASS 9a40018914.018.04.0101.34.35.5CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75
CASS 8400176312.0316.04.074431.495.196.3CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a40018914.018.04.0101.34.35.5CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.7
CASS 8400177316.0319.53.5771.196.397.4CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184349.05.01792.3104.8106.4CASS 8400185349.0352.53.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.10.5 </td
CASS 8400178319.5323.23.73392.897.498.5CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001889.014.05.0180.52.74.3CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019018.022.04.060.75.56.7CASS 9a40019018.022.04.5161.46.78.1CASS 9a40019122.026.54.5161.46.7<
CASS 8400179323.2328.04.83611412.098.5100.0CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.0180.52.74.3CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.49.5
CASS 8400180328.0330.52.54393.5100.0100.7CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.40.5
CASS 8400181330.5335.04.5471.5100.7102.1CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.40.5
CASS 8400182335.0340.35.32173.6102.1103.7CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a4001889.014.05.0180.52.74.3CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.40.5
CASS 8400183340.3344.03.7714.7103.7104.8CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a4001889.014.05.0180.52.74.3CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.10.5
CASS 8400184344.0349.05.01792.3104.8106.4CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a4001889.014.05.0180.52.74.3CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.10.5
CASS 8400185349.0352.53.543221.4106.4107.4CASS 8400186352.5358.05.5613.2107.4109.1CASS 9a4001874.09.05.02410.81.22.7CASS 9a4001889.014.05.0180.52.74.3CASS 9a40018914.018.04.0101.34.35.5CASS 9a40019018.022.04.060.75.56.7CASS 9a40019122.026.54.5161.46.78.1CASS 9a40019226.531.24.7795.68.40.5
CASS 8 400186 352.5 358.0 5.5 61 3.2 107.4 109.1 CASS 9a 400187 4.0 9.0 5.0 241 0.8 1.2 2.7 CASS 9a 400188 9.0 14.0 5.0 18 0.5 2.7 4.3 CASS 9a 400189 14.0 18.0 4.0 10 1.3 4.3 5.5 CASS 9a 400190 18.0 22.0 4.0 6 0.7 5.5 6.7 CASS 9a 400191 122.0 26.5 4.5 16 1.4 6.7 8.1 CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.1 0.5
CASS 9a 400187 4.0 9.0 5.0 241 0.8 1.2 2.7 CASS 9a 400188 9.0 14.0 5.0 18 0.5 2.7 4.3 CASS 9a 400188 9.0 14.0 5.0 18 0.5 2.7 4.3 CASS 9a 400189 14.0 18.0 4.0 10 1.3 4.3 5.5 CASS 9a 400190 18.0 22.0 4.0 6 0.7 5.5 6.7 CASS 9a 400191 22.0 26.5 4.5 16 1.4 6.7 8.1 CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.1 0.5
CASS 9a 400188 9.0 14.0 5.0 18 0.5 2.7 4.3 CASS 9a 400189 14.0 18.0 4.0 10 1.3 4.3 5.5 CASS 9a 400189 14.0 18.0 4.0 10 1.3 4.3 5.5 CASS 9a 400190 18.0 22.0 4.0 6 0.7 5.5 6.7 CASS 9a 400191 22.0 26.5 4.5 16 1.4 6.7 8.1 CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.1 0.5
CASS 9a 400189 14.0 18.0 4.0 10 1.3 4.3 5.5 CASS 9a 400190 18.0 22.0 4.0 6 0.7 5.5 6.7 CASS 9a 400190 18.0 22.0 4.0 6 0.7 5.5 6.7 CASS 9a 400191 22.0 26.5 4.5 16 1.4 6.7 8.1 CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.1 0.5
CASS 9a 400190 18.0 22.0 4.0 6 0.7 5.5 6.7 CASS 9a 400191 22.0 26.5 4.5 16 1.4 6.7 8.1 CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.1
CASS 9a 400191 22.0 26.5 4.5 16 1.4 6.7 8.1 CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.1 0.5
CASS 9a 400192 26.5 31.2 4.7 79 5.6 8.4 0.5
CASS 9a 400193 31.2 36.0 4.8 38 2.2 9.5 11.0
CASS 9a 400194 36.0 46.3 10.3 756 3.0 11.0 14.1
CASS 9a 400195 46.3 50.6 4.3 161 2.6 14.1 15.4
CASS 9a 400196 50.6 52.6 2.0 1759 7.0 15.4 16.0
CASS 9a 400197 52.6 56.9 4.3 136 1.8 16.0 17.3
CASS 9a 400198 56.9 62.1 5.2 140 1.9 17.3 18.9
CASS 9a 400199 62.1 67.0 4.9 148 5.0 18.9 20.4
CASS 9a 400200 67.0 72.0 5.0 75 1.2 20.4 21.9
CASS 9a 400201 72.0 77.0 5.0 12 0.5 21.9 23.5
CASS 9a 400202 77.0 82.0 5.0 39 1.6 23.5 25.0
CASS 9a 400203 82.0 87.0 5.0 2191 1.5 25.0 26.5
CASS 9a 400204 87.0 92.0 5.0 81 1.9 26.5 28.0
CASS 9a 400205 92.0 97.0 5.0 51 1.2 28.0 29.6
CASS 9a 400206 97.0 102.0 5.0 28 1.5 29.6 31.1
CASS 9a 400207 102.0 107.0 5.0 54 1.6 31.1 32.6
CASS 9a 400208 107.0 112.0 5.0 141 2.1 32.6 34.1
CASS 9a 400209 112.0 117.0 5.0 155 3.2 34.1 35.7
CASS 9a 400210 117.0 122.0 5.0 155 2.5 35.7 37.2
CASS 9a 400211 122.0 124.9 2.9 21 2.7 37.2 38.1
CASS 9a 400212 124.9 128.0 3.1 1405 12.9 38.1 30.0
CASS 9a 400213 128.0 133.0 5.0 84 3.9 30.0 40.5
CASS 9a 400214 133.0 138.0 5.0 25 2.7 40.5 42.1
CASS 9a 400215 138.0 143.0 5.0 64 3.4 42.1
CASS 9a 400216 143.0 148.0 5.0 275 1.6 43.6 45.4
CASS 9a 400217 148.0 154.0 6.0 97 3.0 45.1 46.0
CASS 9a 400218 154.0 159.0 5.0 48 3.2 46.0 48.5

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 9a	400219	159.0	164.5	5.5	31	1.6	48.5	50.1
CASS 9a	400220	164.5	169.0	4.5	3282	4.9	50.1	51.5
CASS 9a	400221	169.0	174.5	5.5	29	1.9	51.5	53.2
CASS 9a	400222	174.5	179.0	4.5	2263	9.6	53.2	54.6
CASS 9a	400223	179.0	184.0	5.0	372	3.1	54.6	56.1
CASS 9a	400224	184.0	187.0	3.0	383	18.3	56.1	57.0
CASS 9a	400225	187.0	192.0	5.0	930	33.7	57.0	58.5
CASS 9a	400226	192.0	197.5	5.5	1342	12.3	58.5	60.2
CASS 9a	400227	197.5	201.0	3.5	67	1.0	60.2	61 3
CASS 9a	400228	201.0	205.0	4.0	46	1.0	61.3	62.5
CASS 9a	400229	205.0	209.0	4.0	74	3.8	62.5	63.7
CASS 9a	400230	209.0	213.0	4.0	841	2.4	63.7	64.0
CASS 9a	400231	213.0	217.1	4.1	529	2. 1 4.1	64.0	66.2
CASS 9a	400232	217.1	221.0	30	1635	5.5	66.2	67.4
CASS 9a	400233	221.0	226.0	5.0	1000	1.5	67.4	69.0
CASS 9a	400234	226.0	220.0	5.0	40	1.5	69.0	70.4
CASS 9a	400235	231.0	236.0	5.0	-40	2.0	70.4	70.4
CASS 9a	400236	236.0	241.0	5.0	27	0.1	70.4	71.9
CASS 0a	400230	230.0	241.0	5.0	150	2.1	71.9	73.0
CASS 02	400237	241.0	240.4	4.4	1765	1.3	73.5	74.8
CA05 9a	400230	240.4	250.0	4.0	1703	1.7	74.8	76.2
CASS 9a	400239	250.0	200.0	5.0	10	2.0	76.2	//./
	400240	200.0	200.1	3.1	19	1.5	//./	/8./
	400241	200.1	201.0	2.9	4770	0.6	/8./	79.5
	400242	201.0	204.9	3.9	4//0	2.9	79.5	80.7
	400243	204.9	270.0	5.1	107	1.2	80.7	82.3
CASS 98	400244	270.0	275.0	5.0	11	1.5	82.3	83.8
CASS 9a	400245	275.0	280.0	5.0	41	1.0	83.8	85.3
CASS 98	400246	280.0	285.0	5.0	32	3.6	85.3	86.9
CASS 9a	400247	285.0	287.0	2.0	//	4.5	86.9	87.5
CASS 9a	400248	287.0	291.3	4.3	24	4.3	87.5	88.8
CASS 9a	400249	291.3	295.0	3.7	2792	6.5	88.8	89.9
CASS 9a	400250	295.0	299.9	4.9	29	2.4	89.9	91.4
CASS 9a	400251	299.9	301.4	1.5	42	4.5	91.4	91.9
CASS 9a	400252	301.4	305.0	3.6	14	0.9	91.9	93.0
CASS 9a	400253	305.0	310.0	5.0	38	1.4	93.0	94.5
CASS 9a	400254	310.0	315.0	5.0	387	1.5	94.5	96.0
CASS 9a	400255	315.0	320.0	5.0	28	1.5	96.0	97.5
CASS 9a	400256	320.0	326.0	6.0	31	1.5	97.5	99.4
CASS 9a	400257	326.0	328.0	2.0	1800	52.1	99.4	100.0
CASS 9a	400258	328.0	333.0	5.0	12	1.2	100.0	101.5
CASS 9a	400259	333.0	337.7	4.7	89	3.0	101.5	102.9
CASS 9a	400260	337.7	341.4	3.7	14	1.6	102.9	104.1
CASS 9a	400261	341.4	345.2	3.8	2499	18.3	104.1	105.2
CASS 9a	400262	345. 2	350.0	4.8	345	3.7	105.2	106.7
CASS 9a	400263	350.0	355.0	5.0	17	1.5	106.7	108.2
CASS 9a	400264	355.0	359.0	4.0	25	1.3	108.2	109.4
CASS 9a	400265	359.0	364.0	5.0	36	2.0	109.4	110.9
CASS 9a	400266	364.0	369.0	5.0	952	45.3	110.9	112.5
CASS 9a	400267	369.0	374.0	5.0	58	7.7	112.5	114.0
CASS 9a	400268	374.0	379.0	5.0	25	1.0	114.0	115.5
CASS 9a	400269	379.0	384.0	5.0	5	0.7	115.5	117.0

Hole-ID	Sample #	From (ft)	To (ft)	Length (ft)	Sn (ppm)	Ag (ppm)	FromM	ТоМ
CASS 9a	400270	384.0	389.0	5.0	1350	5.6	117.0	118.6
CASS 9a	400271	389.0	394.0	5.0	90	5.4	118.6	120.1
CASS 9a	400272	394.0	398.0	4.0	29	0.8	120.1	121.3

Appendix II Updated Drill Hole Table

	*							
Drill_Hole	Location*	Az	Depth	Dip	X_Nad83z4	Y_Nad83z4	Started	Completed
Cass 84-1	60N/47E	180	45.3	-60	606812	6658215	6/15/1984	6/16/1984
Cass 84-2	57+50N/47E	180	83.0	-60	606811	6658145	6/16/1984	6/21/1984
Cass 84-3	53+50N/40E	180	49.5	-60	606590	6658014	6/21/1984	6/22/1984
Cass 84-4	55N/42+70E	180	42.9	-60	606688	6658076	6/22/1984	6/23/1984
Cass 84-5	55N/50E	0	106.7	-60	606891	6658069	6/23/1984	6/27/1984
Cass 84-6	55+50N/52E	0	62.4	-60	606949	6658085	6/27/1984	6/28/1984
Cass 84-7	57+50N/50E	0	103.6	-45	606892	6658142	6/28/1984	7/3/1984
Cass 88-8	54+70N/52E	0	109.1	-60	606950	6658051	6/15/1988	6/17/1988
Cass 88-9	44+50N/58E	0	lost	-45	607135	6658052	6/18/1988	6/19/1988
Cass 88-9a	44+45N/58E	0	121.3	-50	607135	6658052	6/19/1988	6/23/1988
Cass 06-10	54+70N/52E	0	121.9	-60	606950	6658051	7/13/2006	7/14/2006
Cass 06-11	56+80N/52E	180	152.4	-60	606950	6658115	7/15/2006	7/16/2006
Cass 06-12	56+80N/52E	0	152.4	-60	606950	6658117	7/18/2006	7/20/2006
Cass 06-13	58+90N/52E	0	152.4	-50	606950	6658180	7/21/2006	7/24/06
Cass 06-14	56N/47+80E	0	123.4	-50	606834	6658101	7/24/06	7/28/06
	10110							•

• - Local Grid Coordinate locations for 2006 drill holes are approximate